Skip to main content

High-performance implementations of BiEntropy metrics proposed by Grenville J. Croll

Project description

BiEntropy Randomness Metrics for Python

This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954

According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string." In other words, these metrics can be used to help assess the disorder or randomness of binary or byte strings, particularly those that are too short for other randomness tests.

This module includes both a Python C extension and a pure Python module implementing the BiEn and TBiEn metrics from the paper, as well as a suite of tests that verify their correctness. These implementations are available under the submodules 'cbientropy' and 'pybientropy'.

Aliases of C versions of BiEn and TBiEn are included at the top level of this module for convenience.

Basic Usage

The bien and tbien functions support inputs of both binary (i.e., not unicode) strings and object types, such as those provided by the bitstring package, that have both a tobytes() method that returns a binary string and a len() method that returns the length in bits.

In [1]: from bientropy import bien, tbien

In [2]: from bitstring import Bits

In [3]: bien(Bits('0b1011')), tbien(Bits('0b1011'))
Out[3]: (0.9496956846525874, 0.9305948708049089)

In [4]: bien(Bits('0xfa1afe1')), tbien(Bits('0xfa1afe1'))
Out[4]: (0.05957853232204588, 0.7189075024152897)

In [5]: bien(b'\xde\xad\xbe\xef'), tbien(b'\xde\xad\xbe\xef')
Out[5]: (0.060189286721883305, 0.7898265151674035)

See demo.py for more examples.

Performance

According to the paper, the "BiEntropy algorithm evaluates the order and disorder of a binary string of length n in O(n^2) time using O(n) memory." In other words, the run time has quadratic growth and the memory requirement has linear growth with respect to the string length.

The metrics are implemented in Python using the 'bitstring' package for handling arbitrary length binary strings and in native C using the GNU Multiple Precision (GMP) arithmetic library.

The following is a table of speed-ups from the Python to the C implementation for various string byte lengths:

Bytes BiEn TBiEn
16 229 155
32 217 149
48 212 150
64 221 161
128 267 196
256 340 257
512 502 370
1024 802 537

Following is a log-log plot of the average time to compute the various implementations of BiEntropy on a 2.40GHz Intel(R) Xeon(R) E5645 CPU versus the length of the input in bytes.

Run Times

Requirements

This package is tested with Python versions 2.7, 3.4, 3.5 and 3.6.

Installation:

Compiling:

For running tests:

Install from pip

This package includes a C extension which has to be compiled for each platform. Python wheels include compiled binary code and allow the extension to be installed without requiring a compiler.

pip >= 1.4 with setuptools >= 0.8 will use a wheel if there is one available for the target platform:

pip install --user BiEntropy

Once installed, the tests should be run with the command:

python -m bientropy.test_suite

A list of available wheel files is available at: https://pypi.org/project/BiEntropy/#files

Install from Source

The source code for the bientropy package can be cloned or downloaded from:

The GMP library and headers need to be installed before compiling.

On Debian/Ubuntu:

apt-get install libgmp-dev

On RedHat:

yum install gmp-devel

Then, use setup.py to compile and install the package:

python setup.py install --user

Once installed, the tests should be run with the command:

python -m bientropy.test_suite

Compiling on Windows

Compiling GMP on Microsoft Windows is only supported under Cygwin, MinGW or DJGPP. However, this package can be compiled with MPIR, a fork of GMP, on Windows. The source for MPIR is available at http://mpir.org/ The setup.py script expects the header files, library files and DLL to be available under mpir/dll/x64/Release.

A compiled distribution of the MPIR library was also available at: http://www.holoborodko.com/pavel/mpfr/#download To use it, download the MPFR-MPIR-x86-x64-MSVC2010.zip file and extract mpir from the ZIP file to this directory.

Once MPIR is ready, proceed as usual.

python setup.py install --user

After installing, the tests should be run with the command:

python -m bientropy.test_suite

See https://github.com/cython/cython/wiki/CythonExtensionsOnWindows for more information.

Included Scripts

After installing, a demonstration can be run with this command:

python -m bientropy.demo

This runs demo.py, which also serves as an example for using the package.

The same benchmark script used to generate the data shown in the table and plot above is also included. It can be run with:

python -m bientropy.benchmark

Development

To compile with debug symbols and with extra output, use:

python setup.py build_ext --force --debug --define DEBUG

To also disable compiler optimizations, use:

CFLAGS=-O0 python setup.py build_ext --force --debug --define DEBUG

To debug the extension with GDB:

$ gdb python
(gdb) run setup.py test

To run the Valgrind memcheck tool to check for memory corruption and leaks:

valgrind --xml=yes --xml-file=valgrind.xml ${python} setup.py test

Authors

This package, consisting of the C implementations, Python implementations and Python bindings were written by Ryan Helinski rhelins@sandia.gov.

License

Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BiEntropy-1.1.0.tar.gz (31.8 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

BiEntropy-1.1.0-py3-none-any.whl (216.8 kB view details)

Uploaded Python 3

BiEntropy-1.1.0-py2-none-any.whl (216.9 kB view details)

Uploaded Python 2

BiEntropy-1.1.0-cp37-cp37m-manylinux1_x86_64.whl (165.4 kB view details)

Uploaded CPython 3.7m

BiEntropy-1.1.0-cp36-cp36m-win_amd64.whl (224.6 kB view details)

Uploaded CPython 3.6mWindows x86-64

BiEntropy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl (154.7 kB view details)

Uploaded CPython 3.6m

BiEntropy-1.1.0-cp36-cp36m-manylinux1_i686.whl (146.7 kB view details)

Uploaded CPython 3.6m

BiEntropy-1.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (264.7 kB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

BiEntropy-1.1.0-cp35-cp35m-win_amd64.whl (222.4 kB view details)

Uploaded CPython 3.5mWindows x86-64

BiEntropy-1.1.0-cp35-cp35m-manylinux1_x86_64.whl (154.7 kB view details)

Uploaded CPython 3.5m

BiEntropy-1.1.0-cp35-cp35m-manylinux1_i686.whl (146.7 kB view details)

Uploaded CPython 3.5m

BiEntropy-1.1.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (264.7 kB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

BiEntropy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl (154.6 kB view details)

Uploaded CPython 3.4m

BiEntropy-1.1.0-cp34-cp34m-manylinux1_i686.whl (146.6 kB view details)

Uploaded CPython 3.4m

BiEntropy-1.1.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (264.6 kB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

BiEntropy-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl (154.6 kB view details)

Uploaded CPython 2.7mu

BiEntropy-1.1.0-cp27-cp27mu-manylinux1_i686.whl (146.6 kB view details)

Uploaded CPython 2.7mu

BiEntropy-1.1.0-cp27-cp27m-win_amd64.whl (222.6 kB view details)

Uploaded CPython 2.7mWindows x86-64

BiEntropy-1.1.0-cp27-cp27m-manylinux1_x86_64.whl (154.6 kB view details)

Uploaded CPython 2.7m

BiEntropy-1.1.0-cp27-cp27m-manylinux1_i686.whl (146.6 kB view details)

Uploaded CPython 2.7m

BiEntropy-1.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (264.6 kB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file BiEntropy-1.1.0.tar.gz.

File metadata

  • Download URL: BiEntropy-1.1.0.tar.gz
  • Upload date:
  • Size: 31.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0.tar.gz
Algorithm Hash digest
SHA256 038df6b30d59b2756af4c46060a618f9896a016a8474f2f3c88fcb3ea94c6ca0
MD5 b2e543bb7726352f8176ebccd54f03f9
BLAKE2b-256 67c28a0ed29af1c67078d75a6e75acedfbc01c0ca98c2c31563cf22dbfcf2b2c

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 216.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cef7de0a0eae2a1a1d0322a7a77f70498d564622a002f6639401828b3897bcfe
MD5 27ce138b0edd4668a1dd07d4dafaa850
BLAKE2b-256 a32b02cc44b4ccc252ab0788e355dcb04a533691f1f72661ece0864f7d6e1648

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-py2-none-any.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-py2-none-any.whl
  • Upload date:
  • Size: 216.9 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-py2-none-any.whl
Algorithm Hash digest
SHA256 b88f2b7a56ce51a991993c5ae7a53977aae166bd42268a9e7d6c4305e3b499e8
MD5 56fc3904f00658be8578b4429d5daf55
BLAKE2b-256 1b3494a3e44f626abc413e9aa00825146f3196ab7f8fa6c0ad0897e165db9e7d

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 165.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.14

File hashes

Hashes for BiEntropy-1.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5469ee89b7fde760e849ee72fcfd7d32982127300a81dc82dfa7076ab1497cb6
MD5 44db6eb7538fe23337c9f5712ac13541
BLAKE2b-256 5ef5968a9d2d38c3e434466b90d12d4dd176d04c0477b9dfa455f3088323a236

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 224.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 38a37849cd03e15f2af86ab68400f13ed6b98e5a49348c71ab5a80873908e884
MD5 e557ec7cb617336e47f04e4693fb3288
BLAKE2b-256 70c5c7380f8f80463705957db312f830b9963aa77dc3b0614117c0eeaaabd8a3

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 154.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7779d748cf36a6f09be1a74d16ca63f368f4b4b3888a9d2736bc43478a080e76
MD5 ac51c748cd69580f3fe9f49085dd054f
BLAKE2b-256 18b7c4cef251b43a3844c2c5da447075198c1a6f994260a7d9279006ac458931

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 146.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c29a5045a8d1d237e27d8d97fc00e80d63048c74dee22607725efd518bc14ae5
MD5 89a33fb960ac5770e6481e4e27a9ba6b
BLAKE2b-256 0304219e724a873df5bb3a9d8f79d824c5cb2427a68358973699454110b99e3d

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for BiEntropy-1.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1a93fefcfbf90e512dd3dd47a087fb9f0d2e19d82241f0a9d072752d55b67b68
MD5 1a548e906fb6373bbeaf02da22c2765c
BLAKE2b-256 ea54533a5445abdb2a40278c8f86262a9da361b6ee9c0a1072bbfe9899993704

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 222.4 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3b043177b3b257f7c9f26782ac4aa82407b635be6e6412b97206cf553de8d99a
MD5 3142229402c4b30c91f60fa648edf365
BLAKE2b-256 d6dde3917920df99a0f92aa96ac0d2420569ea3518528e150f2d5a12e1b86aae

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 154.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e909090d03dc0f5d45c7623a6040cebf924e6d0b6a49dc46eb16039471d394ac
MD5 8fef220dc5348638e664bd7ea6152ae3
BLAKE2b-256 7e4fb7b7ea9adb2071e3ca7a9fc7060b464c331fa7a686469343daad40aacbe2

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 146.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fd9a99bd2d4bf80bc4fa4f7bf3da0e5cac6322fa9b718ff54722263a9d10c9a5
MD5 53d9bdcc49008badb19590c31e85b259
BLAKE2b-256 806873e759f2e7677afa4eaa338a68be5a7e8eea8d22a0ce32fd7a66345762c4

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for BiEntropy-1.1.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 240bfb88f7c1a8e17d452f81a53d7f97035f430829f1e222c6b1083404345dc5
MD5 32e9988ba6a21ed8d31a2bb224ee5655
BLAKE2b-256 65d9f801348f4a1038a533c9df847941fa2447fc06f9997f9423d7060a2e0769

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 154.6 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b150bfc24bb10cee1477e69828e71444780b13781d08e6d26f71dccb1d5f105e
MD5 e3f6f38099c8ddc3dc80d1fdbde18504
BLAKE2b-256 e7ee5842dac09876001dca6d28adce4f3525d287aba98510567d92d2fde483b2

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 146.6 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 41bf91f41838ea600c3b368bfd3b2883ab195b66c1faaaf94fbabfc649ac5dfc
MD5 feb3e62863ee0ab2e524842e73e356fe
BLAKE2b-256 521798cb04296e7b8ff3a13a645a5c5da920e44dc217a2fbc66e55960f9c2026

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for BiEntropy-1.1.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 13d0ed41684a227e92a51fb1ed1e636d76c7cb25763a5f57df3646ba2cf09a5f
MD5 32999dab6db6ecc081b6783bb1ec1460
BLAKE2b-256 b0f95670b6050414f680189cb79671a1c9e47ef1327bdfb6759416137e9621f3

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 154.6 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a8c605fe848e3883deb888d650ac3aa6231a734ce41b8e12226e8af1fe734e4a
MD5 a06e6e8773097f01e1d6d45bcb16a122
BLAKE2b-256 726c6b5dd8cc0c358c33caf5008d7d9ad5302e160b71ed7309c2f7410ca34539

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 146.6 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7f439133861b9e4db0a8e1d27ce13fbe4f97f0f107227b288a4e3c84917eaa72
MD5 826ea9b2be834d6ca87dd39303607fb0
BLAKE2b-256 146952d9569e404600da5ae74cc67e7b1c40991ac2bc57fe98e84bb9313acf5f

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 222.6 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 ea52ea5c6b369372d06fbb78a2175dceaa944e9eb9f78d128cb5d941a130225c
MD5 283e3bf87abc88b933369dd7457bd0af
BLAKE2b-256 4b77d1fb5001a5b90378010afff8c55176378d4dc4e961426a88db1e76ec676e

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 154.6 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d22034e53bbe606ff7b38c15342a005b78df332215d615432093adb3da05ae20
MD5 5a4b3975dc883268ecaf768f872c948c
BLAKE2b-256 03e23901afb81aa606778458de08100ebc335405d00e009e496a31b676cb1054

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: BiEntropy-1.1.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 146.6 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.5.2

File hashes

Hashes for BiEntropy-1.1.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c9dd889405662f925d6fa909e35847babcdb39269b3832fc48555a74e94cb4e2
MD5 872390f58566efc53450a7b40621f64f
BLAKE2b-256 3e8489725cff72d2bb23315a11772c54665dbaa1bebc58b09e89838e9578fd32

See more details on using hashes here.

File details

Details for the file BiEntropy-1.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for BiEntropy-1.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 14fea37957f40381e409a0ae8e4f064ee1609f9d156b14c8e4a8dd626a9b10a9
MD5 a3ffe10ad45f0185623b97bb7600f344
BLAKE2b-256 e6eef1f42107903007e1c3da957797ee9c332751ce161e99f713744a9bb9904e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page