This package contains various binary classification metric methods.
Project description
Binary Classification Metrics
This package contains various binary classification methods. The methods included are as follows:
Precision Score - precision_score(predicted,actual)
Recall Score - recall_score(predicted,actual)
Selectivity or True Negative Rate - true_negative_rate(predicted,actual)
Negative Predictive Value - negative_predictive_value(predicted,actual)
Miss Rate or False Negative Rate - miss_rate(predicted,actual)
Fall Out or False Positive Rate - fall_out_score(predicted,actual)
False Discovery Rate - false_discovery_rate(predicted,actual)
False Omission Rate - false_omission_rate(predicted,actual)
Weighted Average Precision Score - weighted_avg_precision_score(predicted,actual)
Weighted Average Recall Score - weighted_avg_recall_score(predicted,actual)
Confusion Matrix - confusion_matrix(predicted,actual) - Return False Pos,False Neg,True Pos,True Neg
The two arguments are the predicted classes and actual classes of the classification.
Higher Class Number equates to the positive label.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file BinaryClassificationMetrics-0.0.5.tar.gz
.
File metadata
- Download URL: BinaryClassificationMetrics-0.0.5.tar.gz
- Upload date:
- Size: 1.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8930f79a01f0d0a0180dbe416552f7ab65304a20d5dd789cdf6c74e7abe70ece |
|
MD5 | 5e8840223b4bf724697abec15a34f5c1 |
|
BLAKE2b-256 | af0ba125befd6cb2cf569a00d58dffb8ac1abe754fb5b3b520403a917460c98e |