Skip to main content

Flexible dataframe representation to support nested structures.

Project description

Project generated with PyScaffold PyPI-Server Unit tests

BiocFrame

This package provides BiocFrame class, an alternative to Pandas DataFrame's.

BiocFrame makes no assumption on the types of the columns, the minimum requirement is each column implements length: __len__ and slice: __getitem__ dunder methods. This allows BiocFrame to accept nested representations or any supported class as columns.

To get started, install the package from PyPI

pip install biocframe

Usage

To construct a BiocFrame object, simply provide the data as a dictionary.

from random import random
from biocframe import BiocFrame

obj = {
    "ensembl": ["ENS00001", "ENS00002", "ENS00003"],
    "symbol": ["MAP1A", "BIN1", "ESR1"],
}
bframe = BiocFrame(obj)
print(bframe)
## output
BiocFrame with 3 rows & 2 columns
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ ensembl <list> ┃ symbol <list> ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ ENS00001       │ MAP1A         │
│ ENS00002       │ BIN1          │
│ ENS00003       │ ESR1          │
└────────────────┴───────────────┘

You can specify complex representations as columns, for example

obj = {
    "ensembl": ["ENS00001", "ENS00002", "ENS00002"],
    "symbol": ["MAP1A", "BIN1", "ESR1"],
    "ranges": BiocFrame({
        "chr": ["chr1", "chr2", "chr3"],
        "start": [1000, 1100, 5000],
        "end": [1100, 4000, 5500]
    }),
}

bframe2 = BiocFrame(obj, row_names=["row1", "row2", "row3"])
print(bframe2)
## output
BiocFrame with 3 rows & 3 columns
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ row_names ┃ ensembl <list> ┃ symbol <list> ┃ ranges <BiocFrame>                          ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ row1      │ ENS00001       │ MAP1A         │ {'chr': 'chr1', 'start': 1000, 'end': 1100} │
│ row2      │ ENS00002       │ BIN1          │ {'chr': 'chr2', 'start': 1100, 'end': 4000} │
│ row3      │ ENS00002       │ ESR1          │ {'chr': 'chr3', 'start': 5000, 'end': 5500} │
└───────────┴────────────────┴───────────────┴─────────────────────────────────────────────┘

Properties

Properties can be accessed directly from the object, for e.g. column names, row names and/or dimensions of the BiocFrame.

# Dimensionality or shape
print(bframe.dims)

## output
## (3, 2)

# get the column names
print(bframe.column_names)

## output
## ['ensembl', 'symbol']

Setters

To set various properties

# set new column names
bframe.column_names = ["column1", "column2"]
print(bframe)
## output
BiocFrame with 3 rows & 2 columns
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ column1 <list> ┃ column2 <list> ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ ENS00001       │ MAP1A          │
│ ENS00002       │ BIN1           │
│ ENS00003       │ ESR1           │
└────────────────┴────────────────┘

To add new columns,

bframe["score"] = range(2, 5)
print(bframe)
## output
BiocFrame with 3 rows & 3 columns
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ column1 <list> ┃ column2 <list> ┃ score <range> ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ ENS00001       │ MAP1A          │ 2             │
│ ENS00002       │ BIN1           │ 3             │
│ ENS00003       │ ESR1           │ 4             │
└────────────────┴────────────────┴───────────────┘

Subset BiocFrame

Use the subset ([]) operator to slice the object,

sliced = bframe[1:2, [True, False, False]]
print(sliced)
## output
BiocFrame with 1 row & 1 column
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ row_names ┃ column1 <list> ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ 1         │ ENS00002       │
└───────────┴────────────────┘

This operation accepts different slice input types, you can either specify a boolean vector, a slice object, a list of indices, or row/column names to subset.

Combine

BiocFrame implements the combine generic from biocgenerics. To combine multiple objects,

bframe1 = BiocFrame(
    {
        "odd": [1, 3, 5, 7, 9],
        "even": [0, 2, 4, 6, 8],
    }
)

bframe2 = BiocFrame(
    {
        "odd": [11, 33, 55, 77, 99],
        "even": [0, 22, 44, 66, 88],
    }
)

from biocgenerics.combine import combine
combined = combine(bframe1, bframe2)

# OR an object oriented approach

combined = bframe.combine(bframe2)
## output
BiocFrame with 10 rows & 2
        columns
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ odd <list> ┃ even <list> ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ 1          │ 0           │
│ 3          │ 2           │
│ ...        │ ...         │
│ 99         │ 88          │
└────────────┴─────────────┘

For more details, check out the BiocFrame class reference.

Note

This project has been set up using PyScaffold 4.5. For details and usage information on PyScaffold see https://pyscaffold.org/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BiocFrame-0.3.15.tar.gz (33.3 kB view details)

Uploaded Source

Built Distribution

BiocFrame-0.3.15-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file BiocFrame-0.3.15.tar.gz.

File metadata

  • Download URL: BiocFrame-0.3.15.tar.gz
  • Upload date:
  • Size: 33.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for BiocFrame-0.3.15.tar.gz
Algorithm Hash digest
SHA256 7bff5027b2fe73e45392542828b8cf07d217d78bc168622afacb7a6df1a095b1
MD5 9a7770921cd9f4065649bead4385acdc
BLAKE2b-256 63ced4b333fdd4cffa64f35a7be880881b4a02800fe9de60384497b4e326d3c0

See more details on using hashes here.

File details

Details for the file BiocFrame-0.3.15-py3-none-any.whl.

File metadata

  • Download URL: BiocFrame-0.3.15-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for BiocFrame-0.3.15-py3-none-any.whl
Algorithm Hash digest
SHA256 b190d0c91c4d41369426f4b2026306bae6801e65211ecb770d248376fdfb842d
MD5 b5a1c9839ccfb4aa19677e8626fc70cd
BLAKE2b-256 057ccfe242d9094c8040c932db077bf3022b96593eee45e80d299d32bcb6afeb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page