Skip to main content

Python Library of General Data Science Solutions

Project description

BloomTechLib

BloomTech Labs Python Library of General Data Science Solutions

BloomTechLib Developer Guidelines

  1. No PEP8 violations.
  2. No global state.
  3. Must be backwards compatible to 3.6.x
  4. Must be forward compatible up to the latest version of Python 3.9.x
  5. Should avoid dependencies outside the standard library.
  6. Every feature will be documented in detail.
  7. Code examples will be included for each feature.

Analysis

CSV Similarity Score

Compares two csv files and returns a score between 0.0 and 1.0 to indicate how similar the data is.

Assumptions

  • The data files have the same header, delimiter and number of rows.
  • Each row of data should be a unique observation, each column representing a single aspect.
  • CSV is a convenient format, but a database adapter could be useful in the future.
  • Data will be primitive strings or numbers and not more complex types.

DataBase Ops

DataModelMongo Class

  • find(dict) -> dict
  • insert(dict)
  • find_many(dict, int) -> Iterator[dict]
  • insert_many(dict)
  • get_df() -> DataFrame

DataModelSQL Class

  • db_action(str)
  • db_query(str) -> list

HTML to DataFrame

  • html_to_df(str, int) -> DataFrame

DevOps API

  • WIP

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BloomTechLib-0.0.1.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

BloomTechLib-0.0.1-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file BloomTechLib-0.0.1.tar.gz.

File metadata

  • Download URL: BloomTechLib-0.0.1.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for BloomTechLib-0.0.1.tar.gz
Algorithm Hash digest
SHA256 9177dcb129a626c72317deb3fa8970a741f21573c770c04a57c40f3bc92c4524
MD5 66f280f97c544a9e64207211697d6ac3
BLAKE2b-256 0a6073dbf8561ab7e65eb5acb905e91637d588dd8bd56748bf41ac249e3787b3

See more details on using hashes here.

File details

Details for the file BloomTechLib-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: BloomTechLib-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for BloomTechLib-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1e9e7aa6cd4725ad2db113af8090a456d3212fc3f93f2bed59aae506b6e58a65
MD5 ff1f5f04825436e667ede4fbde000233
BLAKE2b-256 80e25922caf7455a211b0a602ffd91ca5a0ed2fd71f3ed23f999dc1718c0d594

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page