Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Fast development with generated boolean expressions.

Project description


A picture is worth a thousand words and a vid is worth a thousand pictures, so watch a short intro or continue reading…

This is a python 2 project to speed up boolean expression coding. Sometimes we need to crack a problem by combining boolean operators such as: and, or & not. We as humans are prone to err, specially when expressions get big. But there is an algorithm (Quine-McCluskey) to get this expressions with zero error. Just specify your specs in a test and set a dummy function on your code. When you run your tests a solver will take your specs and code them into a simple boolean expression, enjoy :).

This same boolean logic is being expanded to a broader range of problems check other coding capabilities below.

Package Setup

  1. Install Boolean-Solver package:

    $ pip install Boolean-Solver

Short Example

Add new script( with a mock function:

from boolean_solver import solver as s

def and_function(a, b):

Add a unittest( with specs:

import unittest
from boolean_solver import solver
import start

class MyTest(unittest.TestCase):
    1. Set conditions of your boolean function (for True outputs)
    2. Run solver.execute(self, callable, table) where callable is the boolean function
     with the decorator=@solve().
     See examples below:
    def test_AND_function(self):

        # The output is explicitly set to true
        cond = solver.Conditions(a=True, b=True, output=True)
        solver.execute(self, start.and_function, cond)

Then run $ python -m unittest test. In the result should be:

def and_function(a, b):
    return a and b

Non-Boolean outputs

What if the output for a given logical condition is not a boolean. In that case a programmer would use an if. In the next example this package solves this case automatically:

Add if_function(a, b) to

def if_function(a, b):

Add test_ifs(self) to MyTest(unittest.TestCase) class in

def test_ifs(self):
    Testing ifs.
    cond = solver.Conditions(a=False, b=True, output=1)  # non-boolean output
    cond.add(a=True, b=False, output=0)  # non-boolean output
    solver.execute(self, start.if_function, cond)

Then run $ python -m unittest test, the result should be:

def if_function(a, b):

    if not a and b:
        return 1

    if a and not b:
        return 0

    return False

Now, some cool coding

Add recursive(a) to

def recursive(a):

Add test_recursive_function(self) to MyTest(unittest.TestCase) class in

def test_recursive_function(self):
    Will do recursion, extremely cool!!!
    args = {'a': solver.Code('not a')}
    out = solver.Output(start.recursive, args)

    cond = solver.Conditions(a=False, output=0, default=out)
    solver.execute(self, start.recursive, cond)

The result this time will be a recursive function :)

def recursive(a):

    if not a:
        return 0

    return recursive(not a)

Expression behaving like boolean inputs

Say you want to add a piece of code that evaluates to boolean, then:

Add with_internal_code(a) to

def with_internal_code(a):

Add test_internal_code(self) to MyTest(unittest.TestCase) class in

def test_internal_code(self):
    Testing internal pieces of code
    cond = solver.Conditions(any_non_input_name=solver.Code('isinstance(a, str)'), output=2)
    solver.execute(self, start.internal_code, cond)

The result should be:

def internal_code(a):

    if isinstance(a, str):
        return 2

    return False

Source Code

Setup with source code

  1. Clone repository: git clone

Intro Example with source code

  1. Enter boolean_solver: cd boolean_solver

  2. Run: python

    Sorry, run:
    python -m unittest test_sample
    first, to solve the riddle :)
  3. So, run test with: python -m unittest test_sample

    Solved and tested and_function_3_variables
    .Solved and tested and_function
    .Solved and tested or_function
    .Solved and tested xor_function
    Ran 4 tests in 0.006s
  4. Run: python

    You made it, Congrats !!!
    Now, see the functions, enjoy :)

You just solved 4 boolean expressions: and, or, xor & and3. Specs for these functions are in

How does Boolean Solver works?

Takes a function and a truth_table which is processed using the Quine-McCluskey Algorithm. Then finds a optimal boolean expression. This expression is inserted in the method definition with the decorator @boolean_solver().

Arguments of solver.execute(test, function, conditions)

  1. The test case itself, to be able to perform tests, eg: self

  2. A function to optimize, passed as a callable (with no arguments). This function needs a 3 mock line definition with: line 1: decorator = @solve() line 2: signature eg: def my_function(a, b) line 3: body: only one line, eg: return False. This line will be replaced by the boolean expression.

    1. solver.Conditions() instance: An object that can handle logical conditions with named arguments eg:

      cond = solver.Conditions(a=True, b=False)

      cond.add(a=True, b=True)

    The reserved word output allows:

    cond.add(a=False, b=False, output=False)

    Meaning that when a=False, b=False I want the output to be False

    1. Truth table: Alternatively a truth table can be specified (as a set containing tuples). Where each row is a tuple, the general form is:

      {tuple_row(tuple_inputs(a, b, …), output), …}

    or with a implicit True output:

    {tuple_inputs(a, b, ...), ...}

Arguments of solver.Conditions() and cond.add()

These are specified as a dictionary containing certain keywords as well as the function inputs.

Keywords are:

output: Determines the value to be returned when the given condition is True.

output_args: Dictionary with the values for the arguments when output is a function.

default: Value returned when non of the conditions are True.

Helper Classes

solver.Output: Class that helps define a function with arguments as an output. Has fields:

  • function: A callable object.
  • arguments Dictionary with the function inputs.

solver.Code: Class that helps output pieces of code. The code is given as a String.

solver.Solution: Class that contains the solution of the problem it includes:

  • conditions: The information given by the user.
  • implementation: Plain code.
  • ast: Abstract syntax tree

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for Boolean-Solver, version 0.5.2
Filename, size File type Python version Upload date Hashes
Filename, size Boolean_Solver-0.5.2-py2-none-any.whl (56.7 kB) File type Wheel Python version py2 Upload date Hashes View hashes
Filename, size Boolean Solver-0.5.2.tar.gz (40.5 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page