Skip to main content

Fast NumPy array functions written in Cython

Project description

Bottleneck is a collection of fast NumPy array functions written in Cython:

NumPy/SciPy

median, nanmedian, rankdata, ss, nansum, nanmin, nanmax, nanmean, nanstd, nanargmin, nanargmax

Functions

nanrankdata, nanvar, partsort, argpartsort, replace, nn, anynan, allnan

Moving window

move_sum, move_nansum, move_mean, move_nanmean, move_median, move_std, move_nanstd, move_min, move_nanmin, move_max, move_nanmax

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> arr = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(arr)
3.0

Moving window nanmean:

>>> bn.move_nanmean(arr, window=2)
array([ nan,  1.5,  2. ,  4. ,  4.5])

Fast

Bottleneck is fast:

>>> arr = np.random.rand(100, 100)
>>> timeit np.nansum(arr)
10000 loops, best of 3: 43.7 us per loop
>>> timeit bn.nansum(arr)
100000 loops, best of 3: 7.98 us per loop

Let’s not forget to add some NaNs:

>>> arr[arr > 0.5] = np.nan
>>> timeit np.nansum(arr)
10000 loops, best of 3: 74 us per loop
>>> timeit bn.nansum(arr)
100000 loops, best of 3: 30.6 us per loop

Bottleneck comes with a benchmark suite. To run the benchmark:

>>> bn.bench(mode='fast', dtype='float64', axis=1)
Bottleneck performance benchmark
    Bottleneck  0.8.0
    Numpy (np)  1.8.0
    Scipy (sp)  0.13.2
    Speed is NumPy or SciPy time divided by Bottleneck time
    NaN means one-third NaNs; float64 and axis=1 are used
    High-level functions used (mode='fast')

                 no NaN     no NaN     no NaN      NaN        NaN        NaN
                (10,10)   (100,100) (1000,1000)  (10,10)   (100,100) (1000,1000)
median            8.10       1.04       0.82       8.43       1.70       0.93
nanmedian       140.72      35.97       7.01     151.70     101.35      13.24
nansum           16.20       5.49       3.98      15.94       7.83       6.93
nanmax            7.29       1.98       1.10       7.29       3.49       2.80
nanmean          34.49       9.23       5.25      34.77      11.82       8.05
nanstd           53.70       7.82       4.26      54.83      10.12       6.68
nanargmax        13.76       4.45       4.38      13.75       7.56       7.65
ss                6.23       2.49       2.40       6.26       2.50       2.38
rankdata         65.57       8.87       1.46      64.45      21.63       2.17
partsort          1.21       1.96       2.84       1.33       2.37       4.44
argpartsort       0.40       1.96       2.22       0.45       1.70       1.42
replace           3.64       1.87       1.83       3.66       1.87       1.83
anynan            4.47       2.14       1.50       4.67      10.05     116.63
move_sum         58.31      54.99      85.41      58.22      57.03      87.54
move_nansum     168.52     173.22     263.86     167.18     187.21     409.86
move_mean        98.78      33.89      33.00     102.37      95.10      92.41
move_nanmean    288.63     105.86     133.04     288.69     110.75     185.44
move_std        112.53      23.80      35.88     153.28     192.38     291.89
move_nanstd     307.70      53.50      68.04     341.50      56.74     101.22
move_max         46.32      24.87      21.93      47.65      68.60      65.75
move_nanmax     103.47      36.94      33.36     105.58      81.05      90.14

Reference functions:
median         np.median
nanmedian      local copy of sp.stats.nanmedian
nansum         np.nansum
nanmax         np.nanmax
nanmean        local copy of sp.stats.nanmean
nanstd         local copy of sp.stats.nanstd
nanargmax      np.nanargmax
ss             scipy.stats.ss
rankdata       scipy.stats.rankdata based (axis support added)
partsort       np.sort, n=max(a.shape[1]/2,1)
argpartsort    np.argsort, n=max(a.shape[1]/2,1)
replace        np.putmask based (see bn.slow.replace)
anynan         np.isnan(arr).any(axis)
move_sum       sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_nansum    sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_mean      sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_nanmean   sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_std       sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_nanstd    sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_max       sp.ndimage.maximum_filter1d based, window=a.shape[1] // 5
move_nanmax    sp.ndimage.maximum_filter1d based, window=a.shape[1] // 5

Faster

Under the hood Bottleneck uses a separate Cython function for each combination of ndim, dtype, and axis. A lot of the overhead in bn.nanmax(), for example, is in checking that the axis is within range, converting non-array data to an array, and selecting the function to use to calculate the maximum.

You can get rid of the overhead by doing all this before you, say, enter an inner loop:

>>> arr = np.random.rand(10,10)
>>> func, a = bn.func.nansum_selector(arr, axis=0)
>>> func
<function nansum_2d_float64_axis0>

Let’s see how much faster than runs:

>>> timeit np.nansum(arr, axis=0)
10000 loops, best of 3: 21 us per loop
>>> timeit bn.nansum(arr, axis=0)
100000 loops, best of 3: 1.18 us per loop
>>> timeit func(a)
100000 loops, best of 3: 841 ns per loop

Note that func is faster than Numpy’s non-NaN version of sum:

>>> timeit arr.sum(axis=0)
100000 loops, best of 3: 3.79 us per loop

So, in this example, adding NaN protection to your inner loop comes at a negative cost!

Benchmarks for the low-level Cython functions:

>>> bn.bench(mode='faster', dtype='float64', axis=1)
Bottleneck performance benchmark
    Bottleneck  0.8.0
    Numpy (np)  1.8.0
    Scipy (sp)  0.13.2
    Speed is NumPy or SciPy time divided by Bottleneck time
    NaN means one-third NaNs; float64 and axis=1 are used
    Low-level functions used (mode='faster')

                 no NaN     no NaN     no NaN      NaN        NaN        NaN
                (10,10)   (100,100) (1000,1000)  (10,10)   (100,100) (1000,1000)
median           11.50       1.06       0.82      12.19       1.76       0.95
nanmedian       186.96      35.89       6.99     196.92     102.88      13.15
nansum           25.95       5.91       3.99      25.30       8.44       6.88
nanmax           10.33       2.05       1.11      10.38       3.67       2.80
nanmean          49.86       9.70       5.20      49.81      12.44       8.04
nanstd           69.55       7.98       4.28      71.26      10.33       6.70
nanargmax        20.24       4.72       4.37      20.35       8.04       7.72
ss                9.28       2.65       2.41       9.38       2.64       2.40
rankdata         81.74       8.98       1.45      80.86      22.08       2.14
partsort          1.77       1.97       2.83       1.95       2.46       4.52
argpartsort       0.54       2.00       2.18       0.58       1.75       1.37
replace           5.06       1.91       1.84       5.04       1.91       1.83
anynan            6.59       2.25       1.51       6.92      13.72     125.85
move_sum         81.81      56.10      86.25      81.73      58.49      88.22
move_nansum     240.43     177.71     266.71     239.01     190.94     409.71
move_mean       129.18      33.87      33.16     134.26      96.73      93.24
move_nanmean    394.05     106.12     132.25     395.97     112.24     185.82
move_std        140.03      23.97      36.54     197.33     198.96     298.69
move_nanstd     378.62      53.62      68.33     419.77      56.99     101.56
move_max         61.32      25.00      22.00      61.65      69.32      65.81
move_nanmax     138.46      37.20      33.64     138.35      83.78      90.45

Reference functions:
median         np.median
nanmedian      local copy of sp.stats.nanmedian
nansum         np.nansum
nanmax         np.nanmax
nanmean        local copy of sp.stats.nanmean
nanstd         local copy of sp.stats.nanstd
nanargmax      np.nanargmax
ss             scipy.stats.ss
rankdata       scipy.stats.rankdata based (axis support added)
partsort       np.sort, n=max(a.shape[1]/2,1)
argpartsort    np.argsort, n=max(a.shape[1]/2,1)
replace        np.putmask based (see bn.slow.replace)
anynan         np.isnan(arr).any(axis)
move_sum       sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_nansum    sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_mean      sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_nanmean   sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_std       sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_nanstd    sp.ndimage.convolve1d based, window=a.shape[1] // 5
move_max       sp.ndimage.maximum_filter1d based, window=a.shape[1] // 5
move_nanmax    sp.ndimage.maximum_filter1d based, window=a.shape[1] // 5

Slow

By default only 1d, 2d, and 3d input arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other ndim/dtype combinations result in calls to slower, unaccelerated functions.

It is possible to accelerate higher dimensional arrays if an appropriate flag is set at compile-time (see Fast functions for higher dimensions below).

License

Bottleneck is distributed under a Simplified BSD license. Parts of NumPy, Scipy and numpydoc, all of which have BSD licenses, are included in Bottleneck. See the LICENSE file, which is distributed with Bottleneck, for details.

URLs

download

http://pypi.python.org/pypi/Bottleneck

docs

http://berkeleyanalytics.com/bottleneck

code

http://github.com/kwgoodman/bottleneck

mailing list

http://groups.google.com/group/bottle-neck

Install

Requirements:

Bottleneck

Python 2.6, 2.7, 3.3; NumPy 1.8

Compile

gcc, clang, MinGW

Unit tests

nose

Optional:

SciPy

portions of benchmark suite

tox, virtualenv

run unit tests across multiple python/numpy versions

Directions for installing a released version of Bottleneck (i.e., one obtained from http://pypi.python.org/pypi/Bottleneck) are given below. Cython is not required since the Cython files have already been converted to C source files. (If you obtained bottleneck directly from the repository, then you will need to generate the C source files using the included Makefile which requires Cython.)

Bottleneck takes a few minutes to build on newer machines. On older machines it can take a lot longer (one user reported 30 minutes!).

GNU/Linux, Mac OS X, et al.

To install Bottleneck:

$ python setup.py build
$ sudo python setup.py install

Or, if you wish to specify where Bottleneck is installed, for example inside /usr/local:

$ python setup.py build
$ sudo python setup.py install --prefix=/usr/local

Windows

You can compile Bottleneck using the instructions below or you can use the Windows binaries created by Christoph Gohlke: http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck

In order to compile the C code in Bottleneck you need a Windows version of the gcc compiler. MinGW (Minimalist GNU for Windows) contains gcc.

Install MinGW and add it to your system path. Then install Bottleneck with the commands:

python setup.py build --compiler=mingw32
python setup.py install

Fast functions for higher dimensions

If Cython is available, it is possible to adjust the number of supported dimensions at compile-time by setting the environment variable NDIM_MAX, which defaults to 3. For example, to build 1d, 2d, 3d and 4d versions of all functions:

NDIM_MAX=4 make clean pyx cfiles build

The size of the generated code (and the time required to compile it) scales as NDIM_MAX squared.

Post install

After you have installed Bottleneck, run the suite of unit tests:

>>> import bottleneck as bn
>>> bn.test()
<snip>
Ran 124 tests in 31.197s
OK
<nose.result.TextTestResult run=124 errors=0 failures=0>

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bottleneck-0.8.0.tar.gz (1.6 MB view details)

Uploaded Source

File details

Details for the file Bottleneck-0.8.0.tar.gz.

File metadata

  • Download URL: Bottleneck-0.8.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for Bottleneck-0.8.0.tar.gz
Algorithm Hash digest
SHA256 f0a980510239f685ebaf4dbc8c9f0e55ac964312e0d11c551208c250d22cc64b
MD5 1a363fa35ce521eebb838e1bd6520e24
BLAKE2b-256 50b785dc8f2f15702c457e5f5f4930466090d61fa06de757144c6aaa7c134cd5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page