Skip to main content

Deep learning software to decode EEG, ECG or MEG signals

Project description

Join the chat at https://gitter.im/braindecodechat/community https://github.com/braindecode/braindecode/workflows/docs/badge.svg Doc build on CircleCI Code Coverage

Braindecode

Braindecode is an open-source Python toolbox for decoding raw electrophysiological brain data with deep learning models. It includes dataset fetchers, data preprocessing and visualization tools, as well as implementations of several deep learning architectures and data augmentations for analysis of EEG, ECoG and MEG.

For neuroscientists who want to work with deep learning and deep learning researchers who want to work with neurophysiological data.

Installation Braindecode

  1. Install pytorch from http://pytorch.org/ (you don’t need to install torchvision).

  2. If you want to download EEG datasets from MOABB, install it:

pip install moabb
  1. Install latest release of braindecode via pip:

pip install braindecode

If you want to install the latest development version of braindecode, please refer to contributing page

Documentation

Documentation is online under https://braindecode.org, both in the stable and dev versions.

Contributing to Braindecode

Guidelines for contributing to the library can be found on the braindecode github:

https://github.com/braindecode/braindecode/blob/master/CONTRIBUTING.md

Braindecode chat

https://gitter.im/braindecodechat/community

Citing

If you use this code in a scientific publication, please cite us as:

@article {HBM:HBM23730,
author = {Schirrmeister, Robin Tibor and Springenberg, Jost Tobias and Fiederer,
  Lukas Dominique Josef and Glasstetter, Martin and Eggensperger, Katharina and Tangermann, Michael and
  Hutter, Frank and Burgard, Wolfram and Ball, Tonio},
title = {Deep learning with convolutional neural networks for EEG decoding and visualization},
journal = {Human Brain Mapping},
issn = {1097-0193},
url = {http://dx.doi.org/10.1002/hbm.23730},
doi = {10.1002/hbm.23730},
month = {aug},
year = {2017},
keywords = {electroencephalography, EEG analysis, machine learning, end-to-end learning, brain–machine interface,
  brain–computer interface, model interpretability, brain mapping},
}

as well as the MNE-Python software that is used by braindecode:

@article{10.3389/fnins.2013.00267,
author={Gramfort, Alexandre and Luessi, Martin and Larson, Eric and Engemann, Denis and Strohmeier, Daniel and Brodbeck, Christian and Goj, Roman and Jas, Mainak and Brooks, Teon and Parkkonen, Lauri and Hämäläinen, Matti},
title={{MEG and EEG data analysis with MNE-Python}},
journal={Frontiers in Neuroscience},
volume={7},
pages={267},
year={2013},
url={https://www.frontiersin.org/article/10.3389/fnins.2013.00267},
doi={10.3389/fnins.2013.00267},
issn={1662-453X},
}

Licensing

Braindecode is BSD-licenced (BSD-3-Clause):

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source Initiative.

Copyright (c) 2011-2022, authors of Braindecode. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

  • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

  • Neither the names of braindecode authors nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors “as is” and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

braindecode-0.8.1.tar.gz (385.9 kB view details)

Uploaded Source

Built Distribution

braindecode-0.8.1-py3-none-any.whl (165.2 kB view details)

Uploaded Python 3

File details

Details for the file braindecode-0.8.1.tar.gz.

File metadata

  • Download URL: braindecode-0.8.1.tar.gz
  • Upload date:
  • Size: 385.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for braindecode-0.8.1.tar.gz
Algorithm Hash digest
SHA256 e80515c3d20a80f16800770936d1eb0012de15830a8175dce376256bdaf928e7
MD5 62c33232fca6f47e27c2c971b578d851
BLAKE2b-256 4240a20b82679f738cde851b34a7a5b7a13b2c80685ffd508473b47f79e816a5

See more details on using hashes here.

File details

Details for the file braindecode-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: braindecode-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 165.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for braindecode-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6c2a571095a6ca366ade93a1a12bafce3225ce7d395eca6f7e2eb66edb5dd7da
MD5 d0edd4c5aa0f41a33e3201302df13ede
BLAKE2b-256 1592ab003b014a1e712d62502240dd2eacd4d458a3cb8ee2c8f978ae1754458e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page