Skip to main content

CAE helper functions, models and classes

Project description

CAE-for-DM-segmentation

Convolutional autoencoder for the CMEP course. This project consists of three versions of convolutional autoencoders with classification of the masses. The first classifies the masses in /large_sample_Im_segmented_ref based only on pixel values, while the second also takes in features obtained with pyradiomics into account. The third one is and attempt to adapt the net to ta very large dataset from TCIA (https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM) using multithreading, multiprocessing and special classes to flow the data into the CAE. For all the nets there is a colab notebook and specific python files.

Special package

Included is a specific package with the models, classes and helper functions. These range from simple data processing and I/O operations to class activation map visualization.

Dataset

The smaller dataset is included, while the TCIA dataset can be downloaded from the link above and preprocessed first with dycomdatagen.py to create .png datasets and feature_extraction.py to extract the radiomic features, which are in Pandatabigframe.csv. For ease a shared google drive will be included to run the notebook version. In these scripts multithreading and multiprocessing are used to accelerate the operations.

Models

There are three proposed models, a simple one, one with added regularization and finally a unet. For each model, there is a version that uses just the image pixel values for discrimination and one that also takes teh extracted radiomic features. Models can be further optimized by modifing the TUNER.ipynb notebook, in which Bayesian optimization is used.

Build Status, Documentation and Package

Build Status Documentation Status PyPi version

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CAE-Jake_HP_145-1.4.4.tar.gz (10.0 kB view details)

Uploaded Source

File details

Details for the file CAE-Jake_HP_145-1.4.4.tar.gz.

File metadata

  • Download URL: CAE-Jake_HP_145-1.4.4.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for CAE-Jake_HP_145-1.4.4.tar.gz
Algorithm Hash digest
SHA256 b3921a15c8adf9a550db37fd248c527cb485943b4617bb9a6e7eced131b52236
MD5 a86d162c055d85601a9cfba34042a9d9
BLAKE2b-256 0e1c3266e68802ee93378922a9b9b077963d24ef8e02a6a333957bc5d2349e08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page