Skip to main content

Nested Named Entity Recognition for Chinese Biomedical Text

Project description

CBio-NAMER

CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understanding Evaluation), a benchmark of Nested Named Entity Recognition. We got the 2nd price of the benchmark by 2021/12/07. Single model CBioNAMER also achieves top20 in CBLUE. The score of CBioNAMER has surpassed human(67.0 in $F_1$).

Result

Results of our method:

ensemble

Results of our single model CBioNAMER:

single

Approach

CBioNAMER is a sub-model in our result, which is based on GlobalPointer (a powerful open-source model, thanks for author, we rewrite it with Pytorch).

Usage

First, install PyTorch>=1.7.0. There's no restriction on GPU or CUDA.

Then, install this repo as a Python package:

$ pip install CBioNAMER

Python package transformers==4.6.1 would be automatically installed as well.

API

The CBioNAMER package provides the following methods:

CBioNAMER.load_NER(model_save_path='./checkpoint/macbert-large_dict.pth', maxlen=512, c_size=9, id2c=_id2c, c2c=_c2c)

Returns the pretrained model. It will download the model as necessary. The model would use the first CUDA device if there's any, otherwise using CPU instead.

The model_save_path argument specifies the path of the pretrained model weight.

The maxlen argument specifies the max length of input sentences. The sentences longer than maxlen would be cut off.

The c_size argument specifies the number of entity class. Here is 9 for CBLUE.

The id2c argument specifies the mapping between id and entity class. By default, the id2c argument for CBLUE is:

_id2c = {0: 'dis', 1: 'sym', 2: 'pro', 3: 'equ', 4: 'dru', 5: 'ite', 6: 'bod', 7: 'dep', 8: 'mic'}

The c2c argument specifies the mapping between entity class and its Chinese meaning. By default, the c2c argument for CBLUE is:

_c2c = {'dis': "疾病", 'sym': "临床表现", 'pro': "医疗程序", 'equ': "医疗设备", 'dru': "药物", 'ite': "医学检验项目", 'bod': "身体", 'dep': "科室", 'mic': "微生物类"}


The model returned by CBioNAMER.load_NER() supports the following methods:

model.recognize(text: str, threshold=0)

Given a sentence, returns a list of dictionaries with recognized entity, the format of the dictionary is {'start_idx': entity's starting index, 'end_idx': entity's ending index, 'type': entity class, 'Chinese_type': Chinese meaning of entity class, 'entity': recognized entity}. The threshold argument specifies that the returned list only contains the recognized entity with confidence score higher than threshold.

model.predict_to_file(in_file: str, out_file: str)

Given input and output .json file path, the model would do inference according in_file, and the recognized entity would be saved in out_file. The output file can be submitted to CBLUE. The format of input file is like:

[
  {
    "text": "There is a sentence."
  },
  {
    "text": "There is a sentence."
  },
]

Examples

import CBioNAMER

NER = CBioNAMER.load_NER()
in_file = './CMeEE_test.json'
out_file = './CMeEE_test_answer.json'
NNER.predict_to_file(in_file, out_file)
import CBioNAMER

NER = CBioNAMER.load_NER()
text = "该技术的应用使国内遗传代谢病的诊治水平得到显著提高。"
recognized_entity = NER.recognize(text)
print(recognized_entity)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CBioNAMER-0.1.tar.gz (16.4 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page