To parse CITI format file to xarray.
Project description
CITIfile
Read CITI format file by python.
Introduction
CITIfile
is a tiny library that allows you to read
CITI format file by using Python.
Installation
pip install -U CITIfile
Tutorial
CITIfile
is easy to use:
from CITIfile import read_citifile
data = read_citifile("data.citi")
Then, it will parse the data file and
return a xarray.Dataset
object. Like the following:
<xarray.Dataset>
Dimensions: (C_d2: 3, L_load: 6, freq: 6)
Coordinates:
* L_load (L_load) float64 20.0 21.0 22.0 23.0 24.0 25.0
* C_d2 (C_d2) float64 1.0 1.5 2.0
* freq (freq) float64 3e+07 3.1e+07 3.2e+07 3.3e+07 3.4e+07 3.5e+07
Data variables:
S[1,1] (L_load, C_d2, freq) complex128 (0.0517763713-0.00941470346j) ... (0.0593002475-0.0233189028j)
S[1,2] (L_load, C_d2, freq) complex128 (0.771829001+0.00291050315j) ... (0.774683786+0.0184790199j)
S[2,1] (L_load, C_d2, freq) complex128 (0.771829001+0.00291050315j) ... (0.774683786+0.0184790199j)
S[2,2] (L_load, C_d2, freq) complex128 (0.0517763713-0.00941470346j) ... (0.0593002475-0.0233189028j)
CITIfile
parses and converts CITI format to xarray.Dataset
object,
because CITI format file stores data in multidimensional array format
and xarray
are designed to handle this kind of data.
See xarray documents to
learn that how to manipulate xarray.Dataset
object.
Displaying Coordinates and Data Vairables
print('Coordinates:')
for cname in data.coords:
cdata = data.coords[cname].data
print(f'- {cname}: {len(cname)} ({cdata}, {cdata.dtype})')
print('Data:')
for vname in data.data_vars:
vdata = data.data_vars[vname]
print(f'- {vname}: {vdata.dtype}')
This displays the names and types of the corrdinates and data variables, as well as the available corrdinate values (which are numpy.ndarray
).
Extracting Usable 2D Data
In this example, we extract S[1,1]
vs. freq
, at some given coordinates for C_load
and C_d2
:
# select the data variable at the given corrdinates
data_slice = data.data_vars["S[1,1]"].sel(L_load=20, C_d2=1)
# now there is only one coordinate (freq) left as independent variable
x = data_slice.coords["freq"].data
# dependent variable (Y-axis)
y = data_slice.data
for px, py in zip(x, y):
print(f"freq={px} -> S[1,1]={py}")
Both x
and y
are numpy.ndarray
.
Websites
Main website: https://github.com/TitorX/CITIfile
CITIfile Definitions: http://literature.cdn.keysight.com/litweb/pdf/ads15/cktsim/ck2016.html
xarray document: http://xarray.pydata.org/en/stable/
Reports
Report bugs or ask questions at https://github.com/TitorX/CITIfile/issues.
Contact
Written by Shoukun Sun.
Email: titor.sun@gmail.com
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file citifile-0.1.6.tar.gz
.
File metadata
- Download URL: citifile-0.1.6.tar.gz
- Upload date:
- Size: 4.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e374a86a24dd4eaf81ee7707ee0c3bab08f910e45a896a4208d773776a0ec5c1 |
|
MD5 | 2617b50185d71010de1d6084bde49610 |
|
BLAKE2b-256 | 75b7b369723e805e12b0ed921ada0d94589d13281f6e3052c279a6ceae788bde |
File details
Details for the file CITIfile-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: CITIfile-0.1.6-py3-none-any.whl
- Upload date:
- Size: 4.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d06afee5fe05031182c13d06b5cdcf4635bb0f2eee4475a2a8f675c2d8fb11f1 |
|
MD5 | 2e503fa3bafee0899e70895e86a8f91f |
|
BLAKE2b-256 | d3a03fe9f7cf501275cc8ee8cd7295c6c25c8b9629e6058314a3c406bd37f451 |