Cochran-Mantel-Haenzsel Chi2 Test
Project description
CMH
Implementation of the Cochran-Mantel-Haenzsel Chi2 Test, based on/ported from
"Categorical Data Analysis", page 295 by Agresti (2002) and R
implementation
of the function mantelhaen.test()
.
Usage
import pandas as pd
from cmh import CMH
df = pd.DataFrame(
[
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'no'],
['S2', 'no', 'no'],
['S2', 'no', 'no'],
['S2', 'no', 'no'],
],
columns=['stratum', 'A', 'B']
)
# CMH() will automatically count frequencies of the columns in the dataframe.
result = CMH(df, 'A', 'B', stratifier='stratum')
print(result)
# Will print:
#
# Cochran-Mantel-Haenszel Chi2 test
#
# "A" x "B", stratified by "stratum"
#
# Cochran-Mantel-Haenszel M^2 = 3.33333, dof = 1, p-value = 0.0679
# Individual components of the result can be accessed via attributes:
print(result.dof)
print(result.p)
# If you're working in a Jupyter Notebook, you can also use `display()` for
# a nicely formatted result.
display(result)
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
CMH-1.0.1.tar.gz
(5.0 kB
view details)
Built Distribution
CMH-1.0.1-py3-none-any.whl
(6.1 kB
view details)
File details
Details for the file CMH-1.0.1.tar.gz
.
File metadata
- Download URL: CMH-1.0.1.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ce5620c9fc82532e4bd64eaa3f40cd5b960fe0b0794a475e1381338465cd86f |
|
MD5 | 6a6f4a21d7260e292ae8394e93977d9a |
|
BLAKE2b-256 | ba60eb47fef22209beeab109f012fecf7c87e1d6e1a49acafcb123146175d2a4 |
File details
Details for the file CMH-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: CMH-1.0.1-py3-none-any.whl
- Upload date:
- Size: 6.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81ff4877bef74df109bce90850365337a3187768aa1cb43ea8eadd37c49ab908 |
|
MD5 | f5c537b1e3dc75c67a6121090bd7171d |
|
BLAKE2b-256 | e41d05c03da51a3d65048fa3c65fc70aa33ee3e11a68efbe9fb569f3c4cf80db |