Cochran-Mantel-Haenzsel Chi2 Test
Project description
CMH
Implementation of the Cochran-Mantel-Haenzsel Chi2 Test, based on/ported from
"Categorical Data Analysis", page 295 by Agresti (2002) and R
implementation
of the function mantelhaen.test()
.
Usage
import pandas as pd
from cmh import CMH
df = pd.DataFrame(
[
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'no', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S1', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'yes', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'yes'],
['S2', 'no', 'no'],
['S2', 'no', 'no'],
['S2', 'no', 'no'],
['S2', 'no', 'no'],
],
columns=['stratum', 'A', 'B']
)
# CMH() will automatically count frequencies of the columns in the dataframe.
result = CMH(df, 'A', 'B', stratifier='stratum')
print(result)
# Will print:
#
# Cochran-Mantel-Haenszel Chi2 test
#
# "A" x "B", stratified by "stratum"
#
# Cochran-Mantel-Haenszel M^2 = 3.33333, dof = 1, p-value = 0.0679
# Individual components of the result can be accessed via attributes:
print(result.dof)
print(result.p)
# If you're working in a Jupyter Notebook, you can also use `display()` for
# a nicely formatted result.
display(result)
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
CMH-1.0.0.tar.gz
(4.9 kB
view details)
Built Distribution
CMH-1.0.0-py3-none-any.whl
(5.9 kB
view details)
File details
Details for the file CMH-1.0.0.tar.gz
.
File metadata
- Download URL: CMH-1.0.0.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54031a9389641e7fd623ed86054e03e71aa290fb21219c392b54a7e5b0e8205a |
|
MD5 | 47a0d0edc88aaf8386c1fa3c5fc114e8 |
|
BLAKE2b-256 | f4aceb314d624d04ec3aaf8749e4156fe570cf65fe54e2b5c2a0aedd0c701f2b |
File details
Details for the file CMH-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: CMH-1.0.0-py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 351fbdb4a097a595dff91030263f07925d079c4abad79807abb0b8f22dc340d2 |
|
MD5 | cd62bbd9c5440ca843e3a93367a85a92 |
|
BLAKE2b-256 | 61b7464552aa72bdf7e8361455a747d9ad3fe4f06b36ade5199b69120245ede7 |