Skip to main content

Cochran-Mantel-Haenzsel Chi2 Test

Project description

CMH

Implementation of the Cochran-Mantel-Haenzsel Chi2 Test, based on/ported from "Categorical Data Analysis", page 295 by Agresti (2002) and R implementation of the function mantelhaen.test().

Usage

import pandas as pd
from cmh import CMH

df = pd.DataFrame(
    [
        ['S1', 'no', 'yes'],
        ['S1', 'no', 'yes'],
        ['S1', 'no', 'yes'],
        ['S1', 'no', 'yes'],
        ['S1', 'no', 'yes'],
        ['S1', 'no', 'yes'],
        ['S1', 'yes', 'yes'],
        ['S1', 'yes', 'yes'],
        ['S1', 'yes', 'yes'],
        ['S1', 'yes', 'yes'],
        ['S1', 'yes', 'yes'],
        ['S1', 'yes', 'yes'],

        ['S2', 'yes', 'yes'],
        ['S2', 'yes', 'yes'],
        ['S2', 'yes', 'yes'],
        ['S2', 'yes', 'yes'],
        ['S2', 'yes', 'yes'],
        ['S2', 'no', 'yes'],
        ['S2', 'no', 'yes'],
        ['S2', 'no', 'yes'],
        ['S2', 'no', 'yes'],
        ['S2', 'no', 'no'],
        ['S2', 'no', 'no'],
        ['S2', 'no', 'no'],
        ['S2', 'no', 'no'],

    ],
    columns=['stratum', 'A', 'B']
)

# CMH() will automatically count frequencies of the columns in the dataframe.
result = CMH(df, 'A', 'B', stratifier='stratum')
print(result)

# Will print:
#
#         Cochran-Mantel-Haenszel Chi2 test
#
# "A" x "B", stratified by "stratum"
#
# Cochran-Mantel-Haenszel M^2 = 3.33333, dof = 1, p-value = 0.0679

# Individual components of the result can be accessed via attributes:
print(result.dof)
print(result.p)

# If you're working in a Jupyter Notebook, you can also use `display()` for
# a nicely formatted result.
display(result)

```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CMH-1.0.1.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

CMH-1.0.1-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file CMH-1.0.1.tar.gz.

File metadata

  • Download URL: CMH-1.0.1.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for CMH-1.0.1.tar.gz
Algorithm Hash digest
SHA256 5ce5620c9fc82532e4bd64eaa3f40cd5b960fe0b0794a475e1381338465cd86f
MD5 6a6f4a21d7260e292ae8394e93977d9a
BLAKE2b-256 ba60eb47fef22209beeab109f012fecf7c87e1d6e1a49acafcb123146175d2a4

See more details on using hashes here.

File details

Details for the file CMH-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: CMH-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for CMH-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 81ff4877bef74df109bce90850365337a3187768aa1cb43ea8eadd37c49ab908
MD5 f5c537b1e3dc75c67a6121090bd7171d
BLAKE2b-256 e41d05c03da51a3d65048fa3c65fc70aa33ee3e11a68efbe9fb569f3c4cf80db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page