Skip to main content

COPEX high rate compression quality metrics

Project description

COPEX High Rate Compression Quality Metrics

This package provides quality metrics for high rate compression.

Installation

pip install COPEX_high_rate_compression_quality_metrics

Library usage

Comparison of Two Multiband TIFF Images via LRSP (L:LPIPS, R:RMSE, S:SSIM, P:PSNR)

the following shows concrete example of use of the library

Steps:

  1. Import necessary libraries
  2. Initialize the model and specify the file paths
  3. Define preprocessing functions
  4. Load the TIFF files
  5. Calculate the metrics

1 Library install / import

use "pip install COPEX-high-rate-compression-quality-metrics" to install the library

# Array handler
import numpy as np
# to have a json formated output
import json
import math
# File handler
from skimage import io

# File path handler
import os

# Metrics and utils
import COPEX_high_rate_compression_quality_metrics.metrics as COPEX_metrics
import COPEX_high_rate_compression_quality_metrics.utils as COPEX_utils

2 LPIPS initialization

# Étape 2 : Initialiser le modèle et spécifier le chemin des fichiers

# Initialiser le modèle LPIPS
loss_fn = COPEX_metrics.initialize_LPIPS()

3 File path definition

# Specify file paths here
file_path1 = os.path.join('T28PGV_20160318T111102_B04_20m.tif')
file_path2 = os.path.join('T28PGV_20160318T111102_B04_20m_ter.tif')

4 File loading

#load images and show shapes
image1 = io.imread(file_path1)
print(file_path1," [shape =",image1.shape,", min =",np.min(image1), ", max =",np.max(image1), ", dtype = ",image1.dtype,"]")
image2 = io.imread(file_path2)
print(file_path2," [shape =",image2.shape,", min =",np.min(image2), ", max =",np.max(image2), ", dtype = ",image2.dtype,"]")


# checking if images have the same shape
if image1.shape != image2.shape:
    raise ValueError("Les deux images doivent avoir les mêmes dimensions.")
print("images loaded with success.")

File visualization (optional)

COPEX_utils.display_multiband_tiffs(image1, image2)

png

5 metrics calculation

# Calculate all metrics
lpips_values,lpips_value = COPEX_metrics.calculate_lpips_multiband(image1, image2,loss_fn)
mean_ssim = COPEX_metrics.calculate_ssim_multiband(image1, image2)
psnr_value = COPEX_metrics.calculate_psnr(image1, image2)
rmse_value = COPEX_metrics.calculate_rmse(image1, image2)

Results interpretation

see VT-P382-SLD-003-E-01-00_COPEX_DCC_PM3_20230630.pdf for more informations about metrics weeknesses

LPIPS : (identical images) 0 <==========> 1 (completely different images) lower is better [very good LPIPS do not mean that images are not totaly different pixel wise]

RMSE : (identical images) 0 <==========> +inf (completely different images) lower is better [different kind of degradations can give the same score, do not capture blurring]

SSIM : (completely different images) -1 <==========> 1 (identical images) higher is better [sensible to little local distorions, sensible to noise differences]

PSNR : (completely different images) 0 <==========> +inf (identical images) higher is better [sensible to Big local differences]

data = {
    "files paths":{
        "file1":file_path1,
        "file2":file_path2
        },
    "metrics":{
        "LPIPS":lpips_value,
        "RMSE":rmse_value,
        "SSIM":mean_ssim,
        "PSNR":str(psnr_value) if math.isinf(psnr_value) else psnr_value     
    }
}
json_data = json.dumps(data, indent=4)

print(json_data)
    {
        "files paths": {
            "file1": "T28PGV_20160318T111102_B04_20m.tif",
            "file2": "T28PGV_20160318T111102_B04_20m_ter.tif"
        },
        "metrics": {
            "LPIPS": 0.038381848484277725,
            "RMSE": 192.01308995822703,
            "SSIM": 0.9817911582274915,
            "PSNR": 26.491058156522357
        }
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file copex_high_rate_compression_quality_metrics-0.0.3.tar.gz.

File metadata

File hashes

Hashes for copex_high_rate_compression_quality_metrics-0.0.3.tar.gz
Algorithm Hash digest
SHA256 1668d40ea795b327bb18f0c88873b65a69e93ba860039d159b63a3c9676857ba
MD5 9137be7898cbf202c811e6e9ec53c231
BLAKE2b-256 4501fff8278db2f9eaa105f0a7945875a4885509d496de9079305b93149c9f5a

See more details on using hashes here.

Provenance

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e9bd5f676ae1631871745ee7da3a35180b1b39fd9152b360e48e69719b786e2c
MD5 693afe78787d49aedfff9af5c27ad868
BLAKE2b-256 97c8b4959cfb712c03e1a83f555c2c5e280f695ee1f6145cd01afb161885396d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page