Skip to main content

This package can be used to estimate the metallicity and effective temperature of the stars from the CSST broad-band filter systems

Project description

CSST_parameter

The code is used to estimate the metallicity and effective temperature of the stars from the CSST broad-band filter systems. It is worth noting that only FGK-type stars are valid.

How to install

#from PyPI
python3 -m pip install CSST-parameter

Quick start

The input are NUV, u, g, i, z, y magnitudes. An assumption that magnitudes are independent Gaussian variables is made. You can precess the data through the command line like this.

from CSST import CSST
CSST.CSST_parameter(NUV,u,g,i,z,y) 

The output is one file named CSST_parameter.csv, which stores the photometric metallicity and the effective temperature of the stars.

An example

If a file (a.csv) is given, NUV, u, g, i, z, y magnitudes are contained in this file, then you can precess the data through the command line like this.

python3
import pandas as pd
data=pd.read_csv('a.csv')
NUV0=data.loc[:,['NUV']].values
u0=data.loc[:,['u']].values
g0=data.loc[:,['g']].values
i0=data.loc[:,['i']].values
z0=data.loc[:,['z']].values
y0=data.loc[:,['y']].values
NUV,u,g,i,z,y=NUV0.flatten(),u0.flatten(),g0.flatten(),i0.flatten(),z0.flatten(),y0.flatten()
# estimate the parameter of the stars 
from CSST import CSST
CSST.CSST_parameter(NUV,u,g,i,z,y)           

The output is one file named CSST_parameter.csv, which stores the photometric metallicity and the effective temperature of the stars.

API

CSST_parameter(NUV,u,g,i,z,y)
       
Args:      
    
    NUV: array-like, shape (n, )
       CSST NUV band
    
    u: array-like, shape (n, )
       CSST u band
    
    g: array-like, shape (n, )
       CSST g band
       
    i: array-like, shape (n, )
       CSST i band

    z: array-like, shape (n, )
       CSST z band
       
    y: array-like, shape (n, )
       CSST y band            

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csst_parameter-0.1.4.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

csst_parameter-0.1.4-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file csst_parameter-0.1.4.tar.gz.

File metadata

  • Download URL: csst_parameter-0.1.4.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.7

File hashes

Hashes for csst_parameter-0.1.4.tar.gz
Algorithm Hash digest
SHA256 3a4ab3a07c91ea87d92ad9050fe159cf51e112e052f7402ffa8eda648aaf2b20
MD5 dc95fbd388dec9b5baed73743bd8a15e
BLAKE2b-256 d3519b20b863c1fa0b0059c71598562f4f1bad3800c73dc875e73307d5f0f64a

See more details on using hashes here.

File details

Details for the file csst_parameter-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for csst_parameter-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 08120f63ceb6638a2e73b4a12cb455abcc84f88cb04529158e65798c2e4c75c3
MD5 fdfa700e8136084365849499dd0d22f7
BLAKE2b-256 9d18351d3fca1fb99f0e4abe4c4167cc29f9ed6ac1280e04949cc1199c1ed757

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page