Skip to main content

Tools of CV(Computer Vision)

Project description

Usage Sample ''''''''''''

.. code:: python

    import torch
    from torch import nn
    from cvx2 import WidthBlock

    model = nn.Sequential(
        WidthBlock(c1=1, c2=32),
        nn.MaxPool2d(kernel_size=2, stride=2),
        WidthBlock(c1=32, c2=64),
        nn.MaxPool2d(kernel_size=2, stride=2),
        nn.Flatten(),
        nn.Linear(in_features=64*49, out_features=1024),
        nn.Dropout(0.2),
        nn.SiLU(inplace=True),
        nn.Linear(in_features=1024, out_features=2),
    )

    img = torch.randn(1, 1, 28, 28)
    print(model(img).shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CVX2-0.0.8.tar.gz (10.8 kB view details)

Uploaded Source

File details

Details for the file CVX2-0.0.8.tar.gz.

File metadata

  • Download URL: CVX2-0.0.8.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for CVX2-0.0.8.tar.gz
Algorithm Hash digest
SHA256 67174b7d6577c18c201f2407100ed0f58cdd3d49570839c11e48e6ea88bef30e
MD5 b2af54beb2141ad8f193c0830aeb9c74
BLAKE2b-256 838f301aed56db06c365945b091698eb98ee63e01999049cc87946c0da9d06ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page