Skip to main content

A tool to derive parameters from waveform data for cardiotoxicity research

Project description

CardioWave: A tool for waveform analysis

Documentation Status

Parameters we can calculate

Common waveform parameters include peak count, average peak amplitude, etc. For more details please check Supporting Parameters

Usage

Prepare a CSV table like this format:

compound concentration well plate ..others.. time signal
CP1 0.1 A1 P1 ... 0 1000
CP1 0.1 A1 P1 ... 0.33 1001
... ... ... ... ... ... ...
CP2 0.1 A2 P1 ... 0 1000
... ... ... ... ... ... ...

The order of the rows and columns do not need to be fixed but the column names must be exactly the same to the required (e.g. lowercase). The following columns are compursory: 'plate', 'compound', 'concentration', 'well', 'time', 'signal'. Optional columns include 'cpid' (compound ID) and 'vendor'. Other columns will not be used.

import pandas as pd
from cdwave import data
from cdwave import derive

# Load and convert
df = pd.read_csv('data.csv')
loader = data.StandardCSVLoader(data=df)
dataset = loader.transfer()

# Calculate parameters
# The calculated parameters will be included in the dataset
derive.calc_parameters_for_waveforms(dataset)

# Save and load dataset
dataset.save('data.pickle.gz')
dataset = Data.loaddata('data.pickle.gz')

# Export parameters
parameter_df = dataset.get_parameter_df()
parameter_df.to_csv(os.path.join(data_path, 'parameters.csv'))

GUI has been moved to CarioWaveGUI

# Run by python package
python -m CardioWaveGUI
# Or run by command
python CardioWaveGUI/gui.py

Installation

Requirements

Basic requirements for core functions (deriving parameters from waveforms)

numpy>=1.16
scipy>=1.2
tqdm>=4.32
pandas>=0.24
statsmodels>=0.10.2

For GUI support and parameter analysis

matplotlib>=3.1
pyqt5>=5.9

All the packages required are included in the lastest Anaconda envrionment.

Make documents

  1. Matplotlib is required to render pictures

  2. Generate source code of documents

sphinx-apidoc -o docs/source -f cdwave
  1. Build
sphinx-build docs docs/_build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CardioWave-0.2.3.tar.gz (38.3 kB view details)

Uploaded Source

Built Distribution

CardioWave-0.2.3-py3-none-any.whl (44.9 kB view details)

Uploaded Python 3

File details

Details for the file CardioWave-0.2.3.tar.gz.

File metadata

  • Download URL: CardioWave-0.2.3.tar.gz
  • Upload date:
  • Size: 38.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for CardioWave-0.2.3.tar.gz
Algorithm Hash digest
SHA256 e8632656656315661fb0aff5c71663f25c406ae0091d8a4fc24f79a6adb11337
MD5 bb69ec58555b99443a57708c3f844238
BLAKE2b-256 b5f628b4467b39b717282e95ec72fabc347b39e302408c7a57ea9e553e550974

See more details on using hashes here.

File details

Details for the file CardioWave-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: CardioWave-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 44.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for CardioWave-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e19671d26906f2b8d720bb0dfb159dffeefc5ded3e6b8e8f4e90d062620c656a
MD5 aa6a136ab35f87c05b5aff0da39dff22
BLAKE2b-256 059dc268558eb4296284ec93ed0eb5eb195ee00bdc886e167a7563d0b668849f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page