Skip to main content

Baseline algorithms and analytics tools for Causal Discovery.

Project description

CausalDisco 🪩

Baseline algorithms and analytics tools for Causal Discovery.

Baseline Algorithms

Find the following baseline algorithms in CausalDisco/baselines.py

  • R²-SortnRegress
  • Var-SortnRegress

Analytics tools

Find the following analytics tools in CausalDisco/analytics.py

  • R²-sortability
  • Var-sortability
  • order_alignment

Sources

If you find our algorithms useful please consider citing

@article{reisach2021beware,
  title={Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy to Game},
  author={Reisach, Alexander G. and Seiler, Christof and Weichwald, Sebastian},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

@article{reisach2023simple,
  title={Simple Sorting Criteria Help Find the Causal Order in Additive Noise Models},
  author={Reisach, Alexander G. and Tami, Myriam and Seiler, Christof and Chambaz, Antoine and Weichwald, Sebastian},
  journal={arXiv preprint arXiv:2303.18211},
  year={2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

causaldisco-0.1.0.tar.gz (2.7 kB view details)

Uploaded Source

Built Distribution

causaldisco-0.1.0-py2.py3-none-any.whl (3.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file causaldisco-0.1.0.tar.gz.

File metadata

  • Download URL: causaldisco-0.1.0.tar.gz
  • Upload date:
  • Size: 2.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for causaldisco-0.1.0.tar.gz
Algorithm Hash digest
SHA256 f5c5112025d7ce7a53436a017338572b474ad5ac24604f5979a43b7ec6c7dd52
MD5 8c92450e8cb3a8024ef3de536d43fdc8
BLAKE2b-256 ca82dd4936ff325e51f354e02ab32a38622d31789d65000d5d9d7946e541b70f

See more details on using hashes here.

File details

Details for the file causaldisco-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for causaldisco-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6731c7f9b11f316d5fb89b016601a7fba46f9a35d1fd646f1eab73654d712eab
MD5 26ad68d5b82fb9f649833cbbf07bc732
BLAKE2b-256 f0686b4e3de604498b9dc8865cdeaff993e9a9a67e5de056b2dcfa59e9378cc1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page