Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

Algorithm for round cells identification in the brightfield microscopy images.

Project description

version 1.3.0

Introduction

Automatic tracking of cells in time-lapse microscopy is required to investigate a multitude of biological questions. To limit manipulations during cell line preparation and phototoxicity during imaging, brightfield imaging is often considered. Since the segmentation and tracking of cells in brightfield images is considered to be a difficult and complex task, a number of software solutions have been already developed.

CellStar is one of such algorithms. It is optimized to segment and track images of budding yeast cells growing in monolayer (e.g. images from microfluidic chambers), however the algorithm can be also used to track other round objects (in brightfield as well as fluorescent images).

The important part of that solution is parameter fitting mechanism which allows to train and use CellStar for many different types of imagery.

Please visit our website http://www.cellstar-algorithm.org/ for more details.

Distributions

There are three ways of using CellStar:

The plugin package includes not only the plugin itself but also examples of its usage to guide users on how to achieve best segmentation on a given type of imagery.

Wide range of example usages

During the testing phase of our plugin it turned out that combining parameter fitting and CellProfiler pipeline flow can result in a very flexible solution. In order to show that and also provide a quick starting point for users the Official user guide was prepared.

It contains the ready to use segmentation solution for a wide range of various imagery which includes:

  • complete pipeline description
  • method selection discussions
  • CellProfiler Analyst usage for advanced filtering

The pipelines listed in the document along with the actual imagery are available as a part of plugin version. Every case can be easily to recreate the results.

http://res.cloudinary.com/hrscywv4p/image/upload/c_limit,fl_lossy,h_1440,w_720,f_auto,q_auto/v1/92051/tiles_ytp2ac.jpg

Project details


Release history Release notifications

This version
History Node

1.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
CellStar-1.3.0.tar.gz (35.7 kB) Copy SHA256 hash SHA256 Source None May 29, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page