ChatGLM6Bpkg is a package for ChatGLM-6B (https://github.com/THUDM/ChatGLM-6B/tree/main).
Project description
ChatGLM6Bpkg
这是一个针对ChatGLM-6B封装的包,通过ChatGLM6Bpkg,用户可以简便地使用ChatGLM-6B支持的多种功能。
使用方式
硬件需求
量化等级 | 最低 GPU 显存(推理) | 最低 GPU 显存(高效参数微调) |
---|---|---|
FP16(无量化) | 13 GB | 14 GB |
INT8 | 8 GB | 9 GB |
INT4 | 6 GB | 7 GB |
模型加载
可以通过如下代码调用 ChatGLM-6B 模型来生成对话:
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
>>> model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
>>> model = model.eval()
>>> response, history = model.chat(tokenizer, "你好", history=[])
>>> print(response)
你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
>>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
>>> print(response)
晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:
1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。
如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。
模型的实现仍然处在变动中。如果希望固定使用的模型实现以保证兼容性,可以在 from_pretrained
的调用中增加 revision="v1.1.0"
参数。v1.1.0
是当前最新的版本号,完整的版本列表参见 Change Log。
从本地加载模型
以上代码会由 transformers
自动下载模型实现和参数。完整的模型实现可以在 Hugging Face Hub。如果你的网络环境较差,下载模型参数可能会花费较长时间甚至失败。此时可以先将模型下载到本地,然后从本地加载。
从 Hugging Face Hub 下载模型需要先安装Git LFS,然后运行
git clone https://huggingface.co/THUDM/chatglm-6b
如果你从 Hugging Face Hub 上下载 checkpoint 的速度较慢,可以只下载模型实现
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/THUDM/chatglm-6b
然后从这里手动下载模型参数文件,并将下载的文件替换到本地的 chatglm-6b
目录下。
将模型下载到本地之后,将以上代码中的 THUDM/chatglm-6b
替换为你本地的 chatglm-6b
文件夹的路径,即可从本地加载模型。
Optional 模型的实现仍然处在变动中。如果希望固定使用的模型实现以保证兼容性,可以执行
git checkout v1.1.0
Demo & API
我们提供了一个基于 Gradio 的网页版 Demo 和一个命令行 Demo。
网页版 Demo
示例代码如下:
import ChatGLM6Bpkg
model_name_or_path = "THUDM/chatglm-6b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half().cuda()
model = model.eval()
ChatGLM6Bpkg.launch_web_demo(model=model, tokenizer=tokenizer)
程序会运行一个 Web Server,并输出地址。在浏览器中打开输出的地址即可使用。最新版 Demo 实现了打字机效果,速度体验大大提升。注意,由于国内 Gradio 的网络访问较为缓慢,启用 demo.queue().launch(share=True, inbrowser=True)
时所有网络会经过 Gradio 服务器转发,导致打字机体验大幅下降,现在默认启动方式已经改为 share=False
,如有需要公网访问的需求,可以重新修改为 share=True
启动。
命令行 Demo
示例代码如下
import ChatGLM6Bpkg
model_name_or_path = "THUDM/chatglm-6b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half().cuda()
model = model.eval()
ChatGLM6Bpkg.launch_cli_demo(model=model, tokenizer=tokenizer)
程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入 clear
可以清空对话历史,输入 stop
终止程序。
API部署
示例代码如下:
import ChatGLM6Bpkg
model_name_or_path = "THUDM/chatglm-6b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half().cuda()
model = model.eval()
ChatGLM6Bpkg.launch_server(model=model, tokenizer=tokenizer)
默认部署在本地的 8000 端口,通过 POST 方法进行调用
curl -X POST "http://127.0.0.1:8000" \
-H 'Content-Type: application/json' \
-d '{"prompt": "你好", "history": []}'
得到的返回值为
{
"response":"你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。",
"history":[["你好","你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。"]],
"status":200,
"time":"2023-03-23 21:38:40"
}
低成本部署
模型量化
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:
# 按需修改,目前只支持 4/8 bit 量化
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).quantize(8).half().cuda()
进行 2 至 3 轮对话后,8-bit 量化下 GPU 显存占用约为 10GB,4-bit 量化下仅需 6GB 占用。随着对话轮数的增多,对应消耗显存也随之增长,由于采用了相对位置编码,理论上 ChatGLM-6B 支持无限长的 context-length,但总长度超过 2048(训练长度)后性能会逐渐下降。
模型量化会带来一定的性能损失,经过测试,ChatGLM-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。使用 GPT-Q 等量化方案可以进一步压缩量化精度/提升相同量化精度下的模型性能,欢迎大家提出对应的 Pull Request。
量化过程需要在内存中首先加载 FP16 格式的模型,消耗大概 13GB 的内存。如果你的内存不足的话,可以直接加载量化后的模型,INT4 量化后的模型仅需大概 5.2GB 的内存:
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).half().cuda()
量化模型的参数文件也可以从这里手动下载。
CPU 部署
如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
如果你的内存不足,可以直接加载量化后的模型:
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
如果遇到了报错 Could not find module 'nvcuda.dll'
或者 RuntimeError: Unknown platform: darwin
(MacOS) ,请从本地加载模型
Mac 部署
对于搭载了 Apple Silicon 或者 AMD GPU 的Mac,可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 官方说明 安装 PyTorch-Nightly(正确的版本号应该是2.1.0.dev2023xxxx,而不是2.0.0)。
目前在 MacOS 上只支持从本地加载模型。将代码中的模型加载改为从本地加载,并使用 mps 后端:
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
加载半精度的 ChatGLM-6B 模型需要大概 13GB 内存。内存较小的机器(比如 16GB 内存的 MacBook Pro),在空余内存不足的情况下会使用硬盘上的虚拟内存,导致推理速度严重变慢。此时可以使用量化后的模型如 chatglm-6b-int4。因为 GPU 上量化的 kernel 是使用 CUDA 编写的,因此无法在 MacOS 上使用,只能使用 CPU 进行推理。
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
为了充分使用 CPU 并行,还需要单独安装 OpenMP。
多卡部署
如果你有多张 GPU,但是每张 GPU 的显存大小都不足以容纳完整的模型,那么可以将模型切分在多张GPU上。示例代码如下:
import ChatGLM6Bpkg
model = ChatGLM6Bpkg.load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
即可将模型部署到两张 GPU 上进行推理。你可以将 num_gpus
改为你希望使用的 GPU 数。默认是均匀切分的,你也可以传入 device_map
参数来自己指定。
高效参数微调
本项目实现了对于 ChatGLM-6B 模型基于 P-Tuning v2 的微调。P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。
下面以 ADGEN (广告生成) 数据集为例介绍代码的使用方法。
下载数据集
ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)。
{
"content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
"summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}
从 Google Drive 或者 Tsinghua Cloud 下载处理好的 ADGEN 数据集,将解压后的 AdvertiseGen
目录放到当前目录下。
训练
示例代码如下:
import ChatGLM6Bpkg
ChatGLM6Bpkg.ptuning.ptuning(
do_train=True,
train_file="AdvertiseGen/train.json",
validation_file="AdvertiseGen/dev.json",
prompt_column="content",
response_column="summary",
overwrite_cache=True,
model_name_or_path="THUDM/chatglm-6b",
output_dir="output/adgen-chatglm-6b-pt-128-2e-2",
overwrite_output_dir=True,
max_source_length=64,
max_target_length=64,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=16,
predict_with_generate=True,
max_steps=3000,
logging_steps=10,
save_steps=100,
learning_rate=2e-2,
pre_seq_len=128,
quantization_bit=4
)
pre_seq_len
和 learning_rate
分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit
来被原始模型的量化等级,不加此选项则为 FP16 精度加载。
在默认配置 quantization_bit=4
、per_device_train_batch_size=1
、gradient_accumulation_steps=16
下,INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size
的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。
如果你想要从本地加载模型,可以将上述代码中的 THUDM/chatglm-6b
改为你本地的模型路径。
推理
在 P-tuning v2 训练时模型只保存 PrefixEncoder 部分的参数,所以在推理时需要同时加载原 ChatGLM-6B 模型以及 PrefixEncoder 的权重,示例代码如下:
import ChatGLM6Bpkg
ChatGLM6Bpkg.ptuning.ptuning(
do_predict=True,
validation_file="AdvertiseGen/dev.json",
test_file="AdvertiseGen/dev.json",
overwrite_cache=True,
prompt_column="content",
response_column="summary",
model_name_or_path="THUDM/chatglm-6b",
ptuning_checkpoint="./output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-100",
output_dir="./output/adgen-chatglm-6b-pt-128-2e-2",
overwrite_output_dir=True,
max_source_length=64,
max_target_length=64,
per_device_eval_batch_size=1,
predict_with_generate=True,
pre_seq_len=128,
quantization_bit=4
)
其中,model_name_or_path
是原 ChatGLM-6B 模型的路径,ptuning_checkpoint
是 PrefixEncoder 的权重路径。
仍然兼容旧版全参保存的 Checkpoint,只需要设定 model_name_or_path
为训练后模型的权重路径:
model_name_or_path=$CHECKPOINT_PATH
评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在
./output/adgen-chatglm-6b-pt-128-2e-2/generated_predictions.txt
。
模型加载
在 P-tuning v2 训练后,可通过如下方式加载模型(原 ChatGLM-6B 模型以及 PrefixEncoder 的权重):
import ChatGLM6Bpkg
tokenizer, config, model = ChatGLM6Bpkg.ptuning.load_ptuning_checkpoint(
model_name_or_path="THUDM/chatglm-6b",
ptuning_checkpoint="./output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-100",
pre_seq_len=128,
quantization_bit=4
)
model = model.cuda()
model = model.eval()
ChatGLM6Bpkg.launch_web_demo(model=model, tokenizer=tokenizer)
ChatGLM-6B 示例
以下是一些使用 web_demo.py
得到的示例截图。更多 ChatGLM-6B 的可能,等待你来探索发现!
自我认知
提纲写作
文案写作
邮件写作助手
信息抽取
角色扮演
评论比较
旅游向导
局限性
由于 ChatGLM-6B 的小规模,其能力仍然有许多局限性。以下是我们目前发现的一些问题:
-
模型容量较小:6B 的小容量,决定了其相对较弱的模型记忆和语言能力。在面对许多事实性知识任务时,ChatGLM-6B 可能会生成不正确的信息;它也不擅长逻辑类问题(如数学、编程)的解答。
点击查看例子
-
产生有害说明或有偏见的内容:ChatGLM-6B 只是一个初步与人类意图对齐的语言模型,可能会生成有害、有偏见的内容。(内容可能具有冒犯性,此处不展示)
-
英文能力不足:ChatGLM-6B 训练时使用的指示/回答大部分都是中文的,仅有极小一部分英文内容。因此,如果输入英文指示,回复的质量远不如中文,甚至与中文指示下的内容矛盾,并且出现中英夹杂的情况。
-
易被误导,对话能力较弱:ChatGLM-6B 对话能力还比较弱,而且 “自我认知” 存在问题,并很容易被误导并产生错误的言论。例如当前版本的模型在被误导的情况下,会在自我认知上发生偏差。
点击查看例子
协议
本项目的代码依照 Apache-2.0 协议开源,ChatGLM-6B 模型的权重的使用则需要遵循 Model License。
引用
如果你觉得我们的工作有帮助的话,请考虑引用下列论文
@article{zeng2022glm,
title={Glm-130b: An open bilingual pre-trained model},
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
journal={arXiv preprint arXiv:2210.02414},
year={2022}
}
@inproceedings{du2022glm,
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={320--335},
year={2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file chatglm6bpkg-0.0.1.tar.gz
.
File metadata
- Download URL: chatglm6bpkg-0.0.1.tar.gz
- Upload date:
- Size: 7.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46fb0b324e8f189633b13e5cc903cb81abd675217c14d0b7f13c3c7ae8ee98a2 |
|
MD5 | 970dbd9d74db73fb2ef351cf113fb9fc |
|
BLAKE2b-256 | 5b4cb1067702e213e7d057fa361d2cda7f1c2bda3b8c70dd1b69dec5abf1fce3 |
File details
Details for the file chatglm6bpkg-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: chatglm6bpkg-0.0.1-py3-none-any.whl
- Upload date:
- Size: 80.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf665ec91db5b13cb97dd29f8ea2ffe3d4cc8a207c1cb61d1fb9793bc2e476dc |
|
MD5 | 7daa88c021f7106b69ba235764217a46 |
|
BLAKE2b-256 | 8b36a16b18e2dbecbd4578c9ee76b04eac3e4eb50d9ab34a5dbce5378203512e |