Skip to main content

将中文时间表达词转为相应的时间字符串,支持时间点,时间段,时间间隔。

Project description

ChineseDateTimeNLP

PyPI Python Version

License Code style: black Imports: isort

Downloads Downloads

简介

这是 Time-NLP 的 Python3 版本。
fork 自 Kelab/ChineseTimeNLP

相关链接:

配置

可以传入自定义的 pattern,默认 pattern 也可以通过 from ChineseDateTimeNLP import pattern 导入。

TimeNormalizer(isPreferFuture=True, pattern=None):

对于下午两点、晚上十点这样的词汇,在不特别指明的情况下,默认返回明天的时间点。

安装使用

安装:

pip install ChineseDateTimeNLP

使用:

from ChineseDateTimeNLP        import TimeNormalizer
tn = TimeNormalizer()
res = tn.parse(target=u"三天后")  # target 为待分析语句,baseTime 为基准时间默认是当前时间
print(res)

功能说明

用于句子中时间词的抽取和转换
详情请见 Test.py

tn = TimeNormalizer(isPreferFuture=False)

res = tn.parse(target=u'星期天晚上')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'晚上8点到上午10点之间')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(
    target=u'2013年二月二十八日下午四点三十分二十九秒',
    baseTime='2013-02-28 16:30:29')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(
    target=u'我需要大概33天2分钟四秒',
    baseTime='2013-02-28 16:30:29')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'今年儿童节晚上九点一刻')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'三日')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'7点4')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'今年春分')
print(res)
print('====')

res = tn.parse(target=u'7000万')
print(res)
print('====')

res = tn.parse(target=u'7百')
print(res)
print('====')

res = tn.parse(target=u'7千')
print(res)
print('====')

结果:

目标字符串:  星期天晚上
基础时间 2019-7-28-15-47-27
temp ['星期7晚上']
{"type": "timestamp", "timestamp": "2019-07-28 20:00:00"}
====
目标字符串:  晚上8点到上午10点之间
基础时间 2019-7-28-15-47-27
temp ['晚上8点', '上午10点']
{"type": "timespan", "timespan": ["2019-07-28 20:00:00", "2019-07-28 10:00:00"]}
====
目标字符串:  2013年二月二十八日下午四点三十分二十九秒
基础时间 2013-2-28-16-30-29
temp ['2013年2月28日下午4点30分29秒']
{"type": "timestamp", "timestamp": "2013-02-28 16:30:29"}
====
目标字符串:  我需要大概33天2分钟四秒
基础时间 2013-2-28-16-30-29
temp ['33天2分钟4秒']
timedelta:  33 days, 0:02:04
{"type": "timedelta", "timedelta": {"year": 0, "month": 1, "day": 3, "hour": 0, "minute": 2, "second": 4}}
====
目标字符串:  今年儿童节晚上九点一刻
基础时间 2019-7-28-15-47-27
temp ['今年儿童节晚上9点1刻']
{"type": "timestamp", "timestamp": "2019-06-01 21:15:00"}
====
目标字符串:  三日
基础时间 2019-7-28-15-47-27
temp ['3日']
{"type": "timestamp", "timestamp": "2019-07-03 00:00:00"}
====
目标字符串:  7点4
基础时间 2019-7-28-15-47-27
temp ['7点4']
{"type": "timestamp", "timestamp": "2019-07-28 07:04:00"}
====
目标字符串:  今年春分
基础时间 2019-7-28-15-47-27
temp ['今年春分']
{"type": "timestamp", "timestamp": "2019-03-21 00:00:00"}
====
目标字符串:  7000万
基础时间 2019-7-28-15-47-27
temp ['70000000']
{"type": "error", "error": "no time pattern could be extracted."}
====
目标字符串:  7百
基础时间 2019-7-28-15-47-27
temp []
{"type": "error", "error": "no time pattern could be extracted."}
====
目标字符串:  7千
基础时间 2019-7-28-15-47-27
temp []
{"type": "error", "error": "no time pattern could be extracted."}
====

使用方式

Test.py

TODO

问题 现在版本 正确
晚上8点到上午10点之间 ["2018-03-16 20:00:00", "2018-03-16 22:00:00"] ["2018-03-16 20:00:00", "2018-03-17 10:00:00"]"

声明

  1. 增加了"礼拜xx"的识别
  2. 修复了"2023/10/09"识别错误的问题
  3. 修复了"2023-10-09"被识别为时间区间的问题
  4. 增加了"10/09"的识别
  5. 修复了"10-09"在系统时间是"2023-10-09"的时候,被推测为未来日期"2024-10-09"的问题
  6. 增加了"1009"的识别

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ChineseDateTimeNLP-1.0.3.tar.gz (23.3 kB view details)

Uploaded Source

Built Distribution

ChineseDateTimeNLP-1.0.3-py3-none-any.whl (26.8 kB view details)

Uploaded Python 3

File details

Details for the file ChineseDateTimeNLP-1.0.3.tar.gz.

File metadata

  • Download URL: ChineseDateTimeNLP-1.0.3.tar.gz
  • Upload date:
  • Size: 23.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for ChineseDateTimeNLP-1.0.3.tar.gz
Algorithm Hash digest
SHA256 8082c98e240bc2a5426ca555728836e11766a6923a57914ab84636c7b2e7017d
MD5 ec854c2c727995708b2a873482109678
BLAKE2b-256 72a762d326c2f5a95ea4b63d5ecb24ba393a3be89e3e7b8af8f1b9f4fd7fb747

See more details on using hashes here.

File details

Details for the file ChineseDateTimeNLP-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for ChineseDateTimeNLP-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d89d5a0896848b4280a1adc9686783c6679830fa1d2ad463ebafc68821edb2ea
MD5 37d6a7d09b680607f96628e30215c3b5
BLAKE2b-256 867ab3e5d67cfecfc2017924c5ae46d6a6834713fc4da4cdf42b3e241c70d5d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page