Skip to main content

将中文时间表达词转为相应的时间

Project description

ChineseTimeNLP

PyPI Python Version Code style: black

简介

这是 Time-NLP 的 Python3 版本。
相关链接:

配置

可以传入自定义的 pattern,默认 pattern 也可以通过 from ChineseTimeNLP import pattern 导入。

TimeNormalizer(isPreferFuture=True, pattern=None):

对于下午两点、晚上十点这样的词汇,在不特别指明的情况下,默认返回明天的时间点。

安装使用

安装:

pip install ChineseTimeNLP

使用:

from ChineseTimeNLP import TimeNormalizer
tn = TimeNormalizer()
res = tn.parse(target=u"三天后")  # target 为待分析语句,baseTime 为基准时间默认是当前时间
print(res)

本地开发

开发前安装依赖

pip install -r requirements.txt

在本地安装

python setup.py install

生成包:

# 按照不同系统生成
python setup.py sdist bdist_wheel

功能说明

用于句子中时间词的抽取和转换
详情请见 Test.py

tn = TimeNormalizer(isPreferFuture=False)

res = tn.parse(target=u'星期天晚上')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'晚上8点到上午10点之间')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(
    target=u'2013年二月二十八日下午四点三十分二十九秒',
    baseTime='2013-02-28 16:30:29')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(
    target=u'我需要大概33天2分钟四秒',
    baseTime='2013-02-28 16:30:29')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'今年儿童节晚上九点一刻')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'三日')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'7点4')  # target为待分析语句,baseTime为基准时间默认是当前时间
print(res)
print('====')

res = tn.parse(target=u'今年春分')
print(res)
print('====')

res = tn.parse(target=u'7000万')
print(res)
print('====')

res = tn.parse(target=u'7百')
print(res)
print('====')

res = tn.parse(target=u'7千')
print(res)
print('====')

结果:

目标字符串:  星期天晚上
基础时间 2019-7-28-15-47-27
temp ['星期7晚上']
{"type": "timestamp", "timestamp": "2019-07-28 20:00:00"}
====
目标字符串:  晚上8点到上午10点之间
基础时间 2019-7-28-15-47-27
temp ['晚上8点', '上午10点']
{"type": "timespan", "timespan": ["2019-07-28 20:00:00", "2019-07-28 10:00:00"]}
====
目标字符串:  2013年二月二十八日下午四点三十分二十九秒
基础时间 2013-2-28-16-30-29
temp ['2013年2月28日下午4点30分29秒']
{"type": "timestamp", "timestamp": "2013-02-28 16:30:29"}
====
目标字符串:  我需要大概33天2分钟四秒
基础时间 2013-2-28-16-30-29
temp ['33天2分钟4秒']
timedelta:  33 days, 0:02:04
{"type": "timedelta", "timedelta": {"year": 0, "month": 1, "day": 3, "hour": 0, "minute": 2, "second": 4}}
====
目标字符串:  今年儿童节晚上九点一刻
基础时间 2019-7-28-15-47-27
temp ['今年儿童节晚上9点1刻']
{"type": "timestamp", "timestamp": "2019-06-01 21:15:00"}
====
目标字符串:  三日
基础时间 2019-7-28-15-47-27
temp ['3日']
{"type": "timestamp", "timestamp": "2019-07-03 00:00:00"}
====
目标字符串:  7点4
基础时间 2019-7-28-15-47-27
temp ['7点4']
{"type": "timestamp", "timestamp": "2019-07-28 07:04:00"}
====
目标字符串:  今年春分
基础时间 2019-7-28-15-47-27
temp ['今年春分']
{"type": "timestamp", "timestamp": "2019-03-21 00:00:00"}
====
目标字符串:  7000万
基础时间 2019-7-28-15-47-27
temp ['70000000']
{"type": "error", "error": "no time pattern could be extracted."}
====
目标字符串:  7百
基础时间 2019-7-28-15-47-27
temp []
{"type": "error", "error": "no time pattern could be extracted."}
====
目标字符串:  7千
基础时间 2019-7-28-15-47-27
temp []
{"type": "error", "error": "no time pattern could be extracted."}
====

使用方式

Test.py

TODO

问题 现在版本 正确
晚上8点到上午10点之间 ["2018-03-16 20:00:00", "2018-03-16 22:00:00"] ["2018-03-16 20:00:00", "2018-03-17 10:00:00"]"

声明

fork 自 zhanzecheng/Time_NLP,为了适合自己的编程习惯,删除了代码中部分文件的头部注释信息,信息格式如下,特此声明:

# -*- coding: utf-8 -*-
# @Time    : xxxxxxxx
# @Author  : zhm
# @File    : xxxxx
# @Software: PyCharm
# @Changed : tianyuningmou

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ChineseTimeNLP-3.0.0.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

ChineseTimeNLP-3.0.0-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file ChineseTimeNLP-3.0.0.tar.gz.

File metadata

  • Download URL: ChineseTimeNLP-3.0.0.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for ChineseTimeNLP-3.0.0.tar.gz
Algorithm Hash digest
SHA256 243141ce2f2923c4c71f2361e3363a92bffcbdfd73947cb5b9a786acae6a08e7
MD5 fc6526e647c845c471ecbb0a8f44ebd1
BLAKE2b-256 7242fc1ba44c79eeabe696d42c640850d90c673cc435a54a111deb4d345c3920

See more details on using hashes here.

File details

Details for the file ChineseTimeNLP-3.0.0-py3-none-any.whl.

File metadata

  • Download URL: ChineseTimeNLP-3.0.0-py3-none-any.whl
  • Upload date:
  • Size: 25.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for ChineseTimeNLP-3.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8c9c3e2886d679cde4e2672b4dad6f2c2e565f8b890209f02c0e8e712a295bce
MD5 969c9a7ca878a1fc7f0a406c60ad5d65
BLAKE2b-256 3600aad9d0b8ed532d56e3ffb721dd6f127462a4f3bd5282a1212aeab4e779e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page