Skip to main content

Upload and train machine learning models on a remote server.

Project description

CitadelML

Upload and train machine learning models on a remote server.

Setup

pip install citadelml

Quick use

Create a tensorflow model, and then send it to the server.

from citadelml import upload_model
import tensorflow as tf

model = tf.keras.models.Sequential([
    tf.keras.layers.experimental.preprocessing.Rescaling(1./255),
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10)
])

upload_model(
    server='http://localhost:5000',
    dataset='example_dataset',
    username='usernameGoesHere',
    password='passwordGoesHere',
    model=model,
    loss_function='tf.keras.losses.SparseCategoricalCrossentropy',
    optimizer='adam',
    n_epochs=5,
    seed=12345,
    split=0.2,
    batch_size=32,
    save_training_results=False
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CitadelML-1.0.5.tar.gz (2.9 kB view hashes)

Uploaded Source

Built Distribution

CitadelML-1.0.5-py3-none-any.whl (3.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page