Upload and train machine learning models on a remote server.
Project description
CitadelML
Upload and train machine learning models on a remote server.
Setup
pip install citadelml
Quick use
Create a tensorflow model, and then send it to the server.
from citadelml import upload_model
import tensorflow as tf
model = tf.keras.models.Sequential([
tf.keras.layers.experimental.preprocessing.Rescaling(1./255),
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
upload_model(
server='http://localhost:5000',
dataset='example_dataset',
username='usernameGoesHere',
password='passwordGoesHere',
model=model,
loss_function='tf.keras.losses.SparseCategoricalCrossentropy',
optimizer='adam',
n_epochs=5,
seed=12345,
split=0.2,
batch_size=32,
save_training_results=False
)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
CitadelML-1.0.5.tar.gz
(2.9 kB
view hashes)
Built Distribution
Close
Hashes for CitadelML-1.0.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fac2df2753b15b4b6c492bd74cdb6d46a84098a650afec046267489cb001c238 |
|
MD5 | da60688401c6d530eeca92e00703dea9 |
|
BLAKE2b-256 | 1a908158a3cb755b5d4b67032e7d961d061adc5f527c1cc749804c96f741b7ad |