Skip to main content

SQL programming

Project description

ClickSQL: ClickHouse client for Humans

Package information:

ClickSQL is a smart client for ClickHouse database, which may help users to use ClickHouse more easier and pythonic. More information for ClickHouse can be found at here

Installation

pip install ClickSQL

Usage

Initial connection

to setup a database connection and send a heartbeat-check signal

from ClickSQL import BaseSingleFactorTableNode

conn_str = "clickhouse://default:test121231@99.99.9.9:8123/system"
Node = BaseSingleFactorTableNode(conn_str)

>>> connection test:  Ok.

Query

execute a SQL Query

from ClickSQL import BaseSingleFactorTableNode

conn_str = "clickhouse://default:test121231@99.99.9.9:8123/system"
Node = BaseSingleFactorTableNode(conn_str)

Node('show tables from system limit 1')

>>> connection test:  Ok.
>>>                             name
>>> 0  aggregate_function_combinators

execute a Query without SQL

from ClickSQL import BaseSingleFactorTableNode

factor = BaseSingleFactorTableNode(
        'clickhouse://default:default@127.0.0.1:8123/sample.sample',
        cols=['cust_no', 'product_id', 'money'],
        order_by_cols=['money asc'],
        money='money >= 100000'
    )


factor['money'].head(10)

>>> connection test:  Ok.
>>>        money
>>> 0  1000000.0
>>> 1  1000000.0
>>> 2  1000000.0
>>> 3  1000000.0
>>> 4  1000000.0
>>> 5  1000000.0
>>> 6  1000000.0
>>> 7  1000000.0
>>> 8  1000000.0
>>> 9  1000000.0

Insert data

insert data into database by various ways

Insert data via DataFrame

from ClickSQL import BaseSingleFactorTableNode as factortable
import numpy as np
import pandas as pd
factor = factortable( 'clickhouse://default:default@127.0.0.1:8123/sample.sample'  )
db = 'sample'
table = 'sample'
df  = pd.DataFrame(np.random.random(size=(10000,3)),columns=['cust_no', 'product_id', 'money'])
factor.insert_df(df, db, table, chunksize=100000)

Insert data via SQL(Inner)

from ClickSQL import BaseSingleFactorTableNode as factortable

factor = factortable( 'clickhouse://default:default@127.0.0.1:8123/sample.sample'  )

factor("insert into sample.sample select * from other_db.other_table")

Create table

Create table by SQL

from ClickSQL import BaseSingleFactorTableNode

conn_str = "clickhouse://default:test121231@99.99.9.9:8123/system"
Node = BaseSingleFactorTableNode(conn_str)

Node('create table test.test2 (v1 String, v2 Int64, v3 Float64,v4 DataTime) Engine=MergeTree() order by v4')

Create table by DataFrame

from ClickSQL import BaseSingleFactorTableNode
import numpy as np
import pandas as pd

conn_str = "clickhouse://default:test121231@99.99.9.9:8123/system"
Node = BaseSingleFactorTableNode(conn_str)
db = 'test'
table = 'test2'


df_or_sql_or_dict  = pd.DataFrame(np.random.random(size=(10000,2)),columns=['v1', 'v3'])
df_or_sql_or_dict['v2'] =1
df_or_sql_or_dict['v4'] =pd.to_datetime('2020-01-01 00:00:00')

Node.create( db,  table,  df_or_sql_or_dict,    key_cols=['v4'],)

Contribution

Welcome to improve this package or submit an issue or any others

Author

sn0wfree

Plan

Available functions or properties

  1. get data from clickhouse
  2. insert data into clickhouse
  3. create
  4. alter
  5. execute standard SQL and transform into DataFrame(Auto)
  6. able to execute select query
  7. able to execute insert query
  8. no require clickhouse-client
  9. auto create table sql
  10. can execute explain query
  11. Insert Data via DataFrame
  12. alter function & drop function

In Process

  1. create a pandas_liked executable function, which can compatible with pandas
  2. distributed query(query+insert)

schedule

  1. ORM
  2. can execute user role query
  3. create analysis component
  4. auto report system
  5. table register system
  6. data manager system
  7. meta data manager

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ClickSQL-0.1.8.9.2.tar.gz (40.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ClickSQL-0.1.8.9.2-py3-none-any.whl (50.8 kB view details)

Uploaded Python 3

File details

Details for the file ClickSQL-0.1.8.9.2.tar.gz.

File metadata

  • Download URL: ClickSQL-0.1.8.9.2.tar.gz
  • Upload date:
  • Size: 40.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.10

File hashes

Hashes for ClickSQL-0.1.8.9.2.tar.gz
Algorithm Hash digest
SHA256 1e80ca3dd4f3661c36942de7748a04d79d4661b2f79647a434558221dfcddaa2
MD5 b4a16fb25768218025f9a816ffcb44a1
BLAKE2b-256 a89da6152faf12b3ab4178bb0badb44f42a589d47eb76f4f505882231ee3baba

See more details on using hashes here.

File details

Details for the file ClickSQL-0.1.8.9.2-py3-none-any.whl.

File metadata

  • Download URL: ClickSQL-0.1.8.9.2-py3-none-any.whl
  • Upload date:
  • Size: 50.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.10

File hashes

Hashes for ClickSQL-0.1.8.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1e17463ad687259ce98558564726d3b70fc68a5b4557a03a6f9a8c196e872252
MD5 4cedebcd231910df99fae64b17794aef
BLAKE2b-256 7f0ac3644ded367fc14d1909e27aab496e8528105caace45e7da741bfb25f7a4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page