Skip to main content

Print memory and cpu usage

Project description

profiler

Repository with code for profiling other functions.

Installation command:

pip install CodeProfiler

Profiler

Prints the CPU and memory usage. Logs the output to a log and a csv file too.

#Code Sample for python
from bsort import bsort
from profiler import profile

t = [0,10,3,41,2]
profile(bsort,t)

Sample output:

DateTime:2020-03-25 11:08:50.311120 \
Function Name:bsort \
Input:[0, 2, 3, 10, 41] \
Output:[0, 2, 3, 10, 41] \
create_time:2020-03-25 11:08:49 \
Execution Time:2.3699999999959864e-05 \
Number of active threads:5 \
Machine:AMD64 \
Platform Version:10.0.18362 \
System:Windows \
Processor:Intel64 Family 6 Model 158 Stepping 9, GenuineIntel \
RAM:8 GB \
Process Priority:32 \
Memory Usage:0.031497955322265625 \
Cores:4 \
Cpu Usage:100.0 \
Virtual Memory:svmem(total=8459030528, available=3618177024, percent=57.2, used=4840853504, free=3618177024) \
memory_usage:0 \
read_bytes:4313098 \
write_bytes:2874 \
no. of threads:9 \
username:LEGION\Shreyas \
LOG path: e:\Git\CodeLibrary\Shreyas\Python\log\ \
CSV path: e:\Git\CodeLibrary\Shreyas\Python\csv\ 

Comparer

Compares the functions inside a module

Writes the Complete comparison to a file by the name module_name.csv in the a child directory by the name comp. Also writes a minified output of the same to a file by the name module_name_min.csv .

#Code Sample for python
from profiler import Comparer 
import Sorting
Comparer.comp([54,26,93,17,77,31,44,55,20],Sorting)

Sample output:

Function Name:BubbleSort
Input:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Output:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Execution Time:26000
create_time:2020-03-30 13:01:23
DateTime:2020-03-30 13:01:24.587903
Number of active threads:5
Machine:AMD64
Platform Version:10.0.18362
System:Windows
Processor:Intel64 Family 6 Model 158 Stepping 9, GenuineIntel
RAM:8 GB
Process Priority:32
Memory Usage:0.0633392333984375
Cores:4
Cpu Usage:37.6
Virtual Memory:svmem(total=8459030528, available=2446028800, percent=71.1, used=6013001728, free=2446028800)
memory_usage:0
read_bytes:10824458
write_bytes:0
no. of threads:12
username:LEGION\Shreyas
LOG path: e:\Git\CodeLibrary\Shreyas\Python\log\
CSV path: e:\Git\CodeLibrary\Shreyas\Python\csv\



Function Name:InsertionSort
Input:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Output:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Execution Time:24400
create_time:2020-03-30 13:01:23
DateTime:2020-03-30 13:01:24.622781
Number of active threads:5
Machine:AMD64
Platform Version:10.0.18362
System:Windows
Processor:Intel64 Family 6 Model 158 Stepping 9, GenuineIntel
RAM:8 GB
Process Priority:32
Memory Usage:0.06380844116210938
Cores:4
Cpu Usage:33.3
Virtual Memory:svmem(total=8459030528, available=2444365824, percent=71.1, used=6014664704, free=2444365824)
memory_usage:0
read_bytes:10824458
write_bytes:1196
no. of threads:12
username:LEGION\Shreyas
LOG path: e:\Git\CodeLibrary\Shreyas\Python\log\
CSV path: e:\Git\CodeLibrary\Shreyas\Python\csv\



Function Name:MergeSort
Input:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Output:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Execution Time:121400
create_time:2020-03-30 13:01:23
DateTime:2020-03-30 13:01:24.655694
Number of active threads:5
Machine:AMD64
Platform Version:10.0.18362
System:Windows
Processor:Intel64 Family 6 Model 158 Stepping 9, GenuineIntel
RAM:8 GB
Process Priority:32
Memory Usage:0.06406402587890625
Cores:4
Cpu Usage:37.5
Virtual Memory:svmem(total=8459030528, available=2444148736, percent=71.1, used=6014881792, free=2444148736)
memory_usage:0
read_bytes:10824458
write_bytes:2403
no. of threads:12
username:LEGION\Shreyas
LOG path: e:\Git\CodeLibrary\Shreyas\Python\log\
CSV path: e:\Git\CodeLibrary\Shreyas\Python\csv\



Function Name:SelectionSort
Input:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Output:[17, 20, 26, 31, 44, 54, 55, 77, 93]
Execution Time:55300
create_time:2020-03-30 13:01:23
DateTime:2020-03-30 13:01:24.689604
Number of active threads:5
Machine:AMD64
Platform Version:10.0.18362
System:Windows
Processor:Intel64 Family 6 Model 158 Stepping 9, GenuineIntel
RAM:8 GB
Process Priority:32
Memory Usage:0.06406784057617188
Cores:4
Cpu Usage:87.5
Virtual Memory:svmem(total=8459030528, available=2444124160, percent=71.1, used=6014906368, free=2444124160)
memory_usage:0
read_bytes:10824458
write_bytes:3608
no. of threads:12
username:LEGION\Shreyas
LOG path: e:\Git\CodeLibrary\Shreyas\Python\log\
CSV path: e:\Git\CodeLibrary\Shreyas\Python\csv\



   Function Name  Execution Time  memory_usage  Cpu Usage  write_bytes  read_bytes
1  InsertionSort           24400             0       33.3         1196    10824458
0     BubbleSort           26000             0       37.6            0    10824458
3  SelectionSort           55300             0       87.5         3608    10824458
2      MergeSort          121400             0       37.5         2403    10824458

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CodeProfiler-1.0.0.1.7.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

CodeProfiler-1.0.0.1.7-py3-none-any.whl (18.4 kB view details)

Uploaded Python 3

File details

Details for the file CodeProfiler-1.0.0.1.7.tar.gz.

File metadata

  • Download URL: CodeProfiler-1.0.0.1.7.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4

File hashes

Hashes for CodeProfiler-1.0.0.1.7.tar.gz
Algorithm Hash digest
SHA256 48cdd906cfe374a00875883a3865e259ffdba21cdbe685fb098f4662ff8c1b5e
MD5 3e3d53a35c0002805e9da69dc0866886
BLAKE2b-256 0fd515c74e1b281427c78b58cfcdea9df725fb5f56877d73ed090e4987b88a54

See more details on using hashes here.

File details

Details for the file CodeProfiler-1.0.0.1.7-py3-none-any.whl.

File metadata

  • Download URL: CodeProfiler-1.0.0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 18.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4

File hashes

Hashes for CodeProfiler-1.0.0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 a0d5fce01ca2ae648e74efc52b3da01a39ccb7c7e719a1a905acde83effd7b3b
MD5 d4054dadd6b0ffe778f3da3146581306
BLAKE2b-256 cc90a0a130b61661192196c8dfba25b3190032269cf698e8447233d7444595f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page