Skip to main content

An educational module meant to serve as a prelude to talking about automatic differentiation in deep learning frameworks (for example, as provided by the Autograd module in PyTorch)

Project description

Consult the module API page at

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.4.html

for all information related to this module, including information related to the latest changes to the code.

from ComputationalGraphPrimer import *

cgp = ComputationalGraphPrimer(
               expressions = ['xx=xa^2',
                              'xy=ab*xx+ac*xa',
                              'xz=bc*xx+xy',
                              'xw=cd*xx+xz^3'],
               output_vars = ['xw'],
               dataset_size = 10000,
               learning_rate = 1e-6,
               grad_delta    = 1e-4,
               display_vals_how_often = 1000,
      )

cgp.parse_expressions()
cgp.display_network1()
cgp.gen_gt_dataset(vals_for_learnable_params = {'ab':1.0, 'bc':2.0, 'cd':3.0, 'ac':4.0})
cgp.train_on_all_data()
cgp.plot_loss()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ComputationalGraphPrimer-1.1.4.tar.gz (79.2 kB view details)

Uploaded Source

File details

Details for the file ComputationalGraphPrimer-1.1.4.tar.gz.

File metadata

File hashes

Hashes for ComputationalGraphPrimer-1.1.4.tar.gz
Algorithm Hash digest
SHA256 bbc92d30e019b6356224d8a7cd9e6e5e8831209f23d969b792fb9ed6c1616c38
MD5 101462fec532ba3de1a30e1dc8d7c5ca
BLAKE2b-256 472fbbd64893e25b6c446162ee3861f131ba8bd18be9636127b39c58cd7db0d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page