Skip to main content

No project description provided

Project description

ConservedWaterSearch

https://readthedocs.org/projects/conservedwatersearch/badge/?version=latest https://badge.fury.io/py/conservedwatersearch.svg

The ConservedWaterSearch (CWS) Python library uses density based clustering approach to detect conserved waters from simulation trajectories. First, positions of water molecules are determined based on clustering of oxygen atoms belonging to water molecules(see figure below for more information). Positions on water molecules can be determined using Multi Stage Re-Clustering (MSRC) approach or Single Clustering (SC) approach (see for more information on clustering procedures).

docs/source/figs/Scheme.png

Conserved water molecules can be classified into 3 distinct conserved water types based on their hydrogen orientation: Fully Conserved Waters (FCW), Half Conserved Waters (HCW) and Weakly Conserved Waters (WCW) - see figure below for examples and more information or see CWS docs.

docs/source/figs/WaterTypes.png

Both, MSRC and SC can be used with either OPTICS (via sklearn) and HDBSCAN. MSRC approach using either of the two algorithms produces better quality results at the cost of computational time, while SC approach produces lowe quality results at a fraction of the computational cost.

Citation

See this article.

Installation

The easiest way to install ConservedWaterSearch is using pip:

pip install ConservedWaterSearch

Pymol is the only requirement missing on pip and has to be installed either fom source or conda. For more information see installation.

Conda builds will be available soon.

Example

The easiest way to use CWS is by calling WaterClustering class. The starting trajectory should be aligned first, and coordinates of water oxygen and hydrogens extracted. See WaterNetworkAnalysis for more information and convenience functions.

# imports
from ConservedWaterSearch.water_clustering import WaterClustering
from ConservedWaterSearch.utils import get_orientations_from_positions
# Number of snapshots
Nsnap = 20
# load some example - trajectory should be aligned prior to extraction of atom coordinates
Opos = np.loadtxt("tests/data/testdataO.dat")
Hpos = np.loadtxt("tests/data/testdataH.dat")
wc = WaterClustering(nsnaps=Nsnap, save_intermediate_results=False, save_results_after_done=False)
wc.multi_stage_reclustering(*get_orientations_from_positions(Opos, Hpos))
print(wc.water_type)
# "aligned.pdb" should be the snapshot original trajectory was aligned to.
wc.visualise_pymol(aligned_protein = "aligned.pdb", output_file = "waters.pse")

Sometimes users might want to explicitly classify conserved water molecules. A simple python code can be used to classify waters into categories given an array of 3D oxygen coordinates and their related relative hydrogen orientations:

import ConservedWaterSearch.hydrogen_orientation as HO
# load some example
orientations = np.loadtxt("tests/data/conserved_sample_FCW.dat")
# Run classification
res = HO.hydrogen_orientation_analysis(
     orientations,
)
# print the water type
print(res[0][2])

For more information on preprocessing trajectory data, please refer to the WaterNetworkAnalysis.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ConservedWaterSearch-0.1.0.tar.gz (29.1 kB view details)

Uploaded Source

Built Distribution

ConservedWaterSearch-0.1.0-py3-none-any.whl (30.7 kB view details)

Uploaded Python 3

File details

Details for the file ConservedWaterSearch-0.1.0.tar.gz.

File metadata

  • Download URL: ConservedWaterSearch-0.1.0.tar.gz
  • Upload date:
  • Size: 29.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ConservedWaterSearch-0.1.0.tar.gz
Algorithm Hash digest
SHA256 0811404f0bd2dbac693bbc2f0d6ee1163dbeee34c552c5e33e82cd00a1a56a74
MD5 aa1ef62227737ddb71a80279ed3ddd95
BLAKE2b-256 51b7178269bff90dca7d9dc9c7b55a06cbb511f7cff30ff5c1af58a48ffc5c0b

See more details on using hashes here.

File details

Details for the file ConservedWaterSearch-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for ConservedWaterSearch-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7a455bdb7c920e333087cb9ca4e9f1e8abf8b7ba573e625b96cd2c0d8b670e1d
MD5 95abe78b6b3f84ad943ab5eaf6ae579b
BLAKE2b-256 d77c8daba321d65b45414b1fa51e5cf8a60785f012baad6d79a843bb9ac5b0bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page