ConversationAgent
Project description
說明
不需資料庫之對話腳本代理。
agent
agent
可以透過Json來產生對話核心,為此我們有一個接口可以使用
from ConversationAgent.LibStage import gen_agent
from ConversationAgent import to_bot
- 透過"ConversationAgent.LibStage.gen_agent"方法來建置機器人
- 透過"ConversationAgent.to_bot"方式與機器人溝通
- 該方法需要三個參數
- agent代理物件: gen_agent 產生
- text: 使用者輸入內容,字串內容
- data: 過場資訊,預設使用
{}
空字典,第二次與之後溝通應該戴上to_bot
回傳的資料。
- 該方法會回傳機器人回應與過場資訊,下次溝通保留該過場資訊在進行溝通。
- 該方法需要三個參數
Quick start
from ConversationAgent.LibStage import gen_agent
import ConversationAgent
bot = {
"__MAIN_STAGES__": [
{
"stage_type": "__QA_STAGE__",
"qa_threshold": 1,
"__STAGE_NAME__": "__開始階段__",
"__SYS_QUESTION__": {
"__SYS_WELCOME__": "歡迎句",
"__SYS_REFUSE__": "拒絕句",
"__SYS_COMPLETE__": "完成句"
},
"corpus": {
"早安": "1",
"午安": "2",
"晚安": "3"
},
"__SAVED_NAME__": {
QAStage.__QA_RESPOND__: "QA_r1",
QAStage.__QA_RESPOND_THRESHOLD__: "QA_th",
QAStage.__QA_RESPOND_QUESTION__: "QA_q1",
QAStage.__QA_RESPOND_SCORE__: "QA_s1",
QAStage.__RUNNING_CORPUS__: "QA_c1",
},
"__DISABLE_WELCOME__": False
}
]
}
print(f"\n" * 5)
agent = gen_agent(bot)
data = {}
reply_text, data = ConversationAgent.to_bot(agent, "哈囉", data)
print(f"reply_text: {reply_text}, ")
reply_text, data = ConversationAgent.to_bot(agent, "哈囉", data)
print(f"reply_text: {reply_text}, ")
reply_text, data = ConversationAgent.to_bot(agent, "早安", data)
print(f"reply_text: {reply_text}, ")
Stage 種類
RE_STAGE
RE_STAGE 採用stage_type
為__RE_STAGE__
,是用於最基礎的對話階段,由兩個主要結構構成:
-
__SYS_QUESTION__
: 用來設定該階段的回應句,回應句有三種類型- 歡迎句: 第一次到該階段時,機器人會回應該句子。(可依需求關閉功能,
DISSABLE_WELCOME
設為True
就關閉,預設為False
。) - 拒絕句: 當沒有滿足抓取到所有
is_fits
部分所要求的變數時,機器人會回應該句子。 - 完成句: 以上都完成時,機器人會回應該句子。(可透過
%%
包裹變數名稱,並以空格
前後相隔後,調用該變數。)
- 歡迎句: 第一次到該階段時,機器人會回應該句子。(可依需求關閉功能,
-
is_fits: 透過
正規表達式(regular expression)
從使用者的輸入句子來抓取變數,該變數會儲存起來提供給完成句
和SWITCH_STAGE
使用。
選用設定:
__STAGE_NAME__
: 這是選用設定。 可以設定每個stage的獨特名稱,名稱不可重複。__SYS_WELCOME__
、__SYS_REFUSE__
、__SYS_COMPLETE__
的回應句可以設定成文字陣列,若設為陣列則會隨機取用。
{
"stage_type": "__RE_STAGE__",
"__STAGE_NAME__": "__開始階段__",
"__SYS_QUESTION__": {
"__SYS_WELCOME__": "歡迎句",
"__SYS_REFUSE__": "拒絕句",
"__SYS_COMPLETE__": "完成句"
},
"is_fits": [
[".*", "YOUSAYS"]
],
"__DISABLE_WELCOME__": False,
"__DISABLE_REFUSE__": False
}
SWITCH_STAGE
SWITCH_STAGE 採用stage_type
為__LIB_SWITCH_STAGE__
,用於在Agent
不同路線切換,主要結構是stages_filter
。 stages_filter用來設定切換路線的條件,用[]
可包含帶多種條件多路線,每一條件單位由變數名稱
、限定數值
和 切換路線
三部分組成。
以下說明主要幾種設置方式:
-
無條件設定:
[ ["*",True,"_新路線1_"] ]
-
單一條件設定:
[ ["_VAR_","VALUE1","_新路線1_"], ["_VAR_","VALUE2","_新路線2_"] ]
-
多條件設定:
[ [["_VAR1_","_VAR2_"],["VALUE1","VALUE2"],"_新路線1_"], [["_VAR1_","_VAR2_"],["VALUE3","VALUE4"],"_新路線2_"], ]
-
混合條件設定:
[ ["_VAR1_","VALUE1","_新路線1_"], [["_VAR1_","_VAR2_"],["VALUE3","VALUE4"],"_新路線2_"], ["*",True,"_新路線3_"] ]
-
非
=
之條件設定:[ ["_VAR1_",0.95,"_新路線1_",">="] ]
-
多重非
=
之條件設定:[ [["_VAR1_","_VAR2_"],[0.1,0.56],"_新路線1_",[">=","<"]] ]
**儲存變數方式是透過RE_STAGE
的 is_fits
來執行。
範例:
{
"stage_type": "__LIB_SWITCH_STAGE__",
"stages_filter": [
["VAR","我想要的數值","_成功路線_"],,
["*",True,"_失敗路線_"]
]
}
QA_STAGE
QA_STAGE 採用stage_type
為__QA_STAGE__
,是通過相似度
來決定回應的一種階段,主要有三個部分的組成。
-
says: 用來設定該階段的回應句,回應句有三種類型
- 歡迎句: 第一次到該階段時,機器人會回應該句子。(可依需求關閉功能,
DISSABLE_WELCOME
設為True
就關閉,預設為False
。) - 拒絕句: 當相似分數低於
qa_threshold
時,機器人會回應該句子。(可依需求關閉功能,__DISABLE_REFUSE__
設為True
就關閉,預設為False
。) - 完成句: 以上都完成時,機器人會回應該句子。(可透過
%%
包裹變數名稱,並以空格
前後相隔後,調用該變數。)
- 歡迎句: 第一次到該階段時,機器人會回應該句子。(可依需求關閉功能,
-
corpus: 使用者的輸入會與該字典的所有
key
進行比對,並儲存相關結果,相關結果包含:__QA_RESPOND_QUESTION__
: 相似值最高的 key__QA_RESPOND__
: 相似值最高的 key 對應之 value__QA_RESPOND_SCORE__
: 相似值最高的數值__RUNNING_CORPUS__
: 該次測試時使用的 corpus__QA_RESPOND_THRESHOLD__
: 該次測試使用的 threshold
-
__SAVED_NAME__
: 設定儲存之變數的名稱,方便使用。
{
"stage_type": "__QA_STAGE__",
"qa_threshold": 1,
"says": {
"sys_welcome": "歡迎句",
"sys_refuse": "拒絕句",
"sys_complete": "完成句"
},
"corpus": {
"早安": "1",
"午安": "2",
"晚安": "3"
},
"__SAVED_NAME__": {
"__QA_RESPOND__": "QA_r1",
"__QA_RESPOND_THRESHOLD__": "QA_th",
"__QA_RESPOND_QUESTION__": "QA_q1",
"__QA_RESPOND_SCORE__": "QA_s1",
"__RUNNING_CORPUS__": "QA_c1",
},
"__DISABLE_WELCOME__": False,
"__DISABLE_REFUSE__": False,
}
More Examples
飲料店
bot = {
"__MAIN_STAGES__": [
{
"stage_type": "__RE_STAGE__",
"question": {
"sys_welcome": "歡迎來到飲料店,請輸入您要的東西 紅茶/綠茶 少冰/去冰",
"sys_refuse": "不完全輸入 %%drink_type%% %%ice_type%% ",
"sys_complete": "你輸入的內容是 %%drink_type%% %%ice_type%% "
},
"is_fits": [
["(紅茶|綠茶)+", "drink_type"],
["(少冰|去冰)+", "ice_type"],
]
},
{
"stage_type": "__LIB_SWITCH_STAGE__",
"stages_filter": [
[["drink_type", "ice_type"], ["綠茶", "去冰"], "_新路線1_"],
["*", True, "_新路線2_"]
]
}
],
"_新路線1_": [
{
"stage_type": "__RE_STAGE__",
"question": {
"sys_welcome": "",
"sys_refuse": "",
"sys_complete": "切換分之成功1"
},
"__DISSABLE_Q1__": True
},
],
"_新路線2_": [
{
"stage_type": "__RE_STAGE__",
"question": {
"sys_welcome": "",
"sys_refuse": "",
"sys_complete": "切換分之成功2"
},
"__DISSABLE_Q1__": True
},
]
}
print(f"\n" * 5)
agent = gen_agent(bot)
data = {}
reply_text, data = ConversationAgent.to_bot(agent, "哈囉", data)
print(f"reply_text: {reply_text}, ")
reply_text, data = ConversationAgent.to_bot(agent, "紅茶", data)
print(f"reply_text: {reply_text}, ")
reply_text, data = ConversationAgent.to_bot(agent, "少冰", data)
print(f"reply_text: {reply_text}, ")
ToDo
* Switch除了等號以外的方法
* DISSABLE_WELCOME測試與勘誤名詞
* QAStage 停用拒絕句(無論分數都會通過)
* 多回應方式
* 設定階段名稱
- 修正QAstage為相似度模型階段
- 分類型模型階段
- 繼承的範例
- 說明agent刪除變數的規則
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ConversationAgent-0.6.0.tar.gz
.
File metadata
- Download URL: ConversationAgent-0.6.0.tar.gz
- Upload date:
- Size: 4.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c843cad23fca533b6c7bfeeac6aab0080d1db4f27b7f99be659b724a516f5cd3 |
|
MD5 | 5e936b393a661d160498dfd793d01f22 |
|
BLAKE2b-256 | f8d6eca5e61aafc97c33c0f3d7f8d907bab247a15b50c46c349a9843e3239dc9 |
File details
Details for the file ConversationAgent-0.6.0-py3-none-any.whl
.
File metadata
- Download URL: ConversationAgent-0.6.0-py3-none-any.whl
- Upload date:
- Size: 4.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 662b95c94f3ccb8efd303671d19543adbba7e6446f21effafc3c2d44fb28b72d |
|
MD5 | fcb7c6059cde3c3c7e49567039256478 |
|
BLAKE2b-256 | 1c27bb81dc2c8c6517da4e5e8c797342d820f4b1f720a8704f55e43202606a07 |