Skip to main content

DASPy is an open-source project dedicated to provide a python package for DAS (Distributed Acoustic Sensing) data processing, which comprises classic seismic data processing techniques and Specialized algorithms for DAS applications.

Project description

<img src=”./website/USTC.svg” height=”170” />&emsp;<img src=”./website/DAMS.png” height=”150” />

## DASPy

DASPy is an open-source project dedicated to provide a python package for DAS (Distributed Acoustic Sensing) data processing.

The goal of the DASPy project is to lower the bar of DAS data processing. DASPy includes: * Classic seismic data processing techniques, including preprocessing, filter, spectrum analysis, and visualization * Specialized algorithms for DAS applications, including denoising, waveform decomposition, channel attribute analysis, and strain-velocity conversion.

DASPy is licensed under the MIT License. [An English version of DASPy tutorial](https://daspy-tutorial.readthedocs.io/en/latest/), [a Chinese version of DASPy tutorial](https://daspy-tutorial-cn.readthedocs.io/zh-cn/latest/) and [the DASPy paper](document/srl-2024124.1.pdf) is available. If you have any questions, please contact me via <hmz2018@mail.ustc.edu.cn>.

## Installation DASPy is currently running on Linux, Windows and Mac OS. DASPy runs on Python 3.9 and up. We recommend you use the latest version of python 3 if possible.

### Pip (recommanded) ` pip install DASPy-toolbox `

Install the latest version from GitHub:

` pip install git+https://github.com/HMZ-03/DASPy.git `

### Conda ` conda install -c hmz-03 daspy `

If an error is reported, please try updating conda:

` conda update -n base -c conda-forge conda `

### Manual installation 1. Install dependent packages: numpy, scipy >=1.13, matplotlib, geographiclib, pyproj, h5py, segyio, nptdms, tqdm

  1. Add DASPy into your Python path.

## Getting started ` from daspy import read sec = read() # load example waveform sec.bandpass(1, 15) sec.plot() ` <img src=”./website/waveform.png” height=”500” />

### Contributing

Please see details on how to contribute to the project [here](CONTRIBUTING.md) and [here](CodingStyleGuide.md).

### Reference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DASPy-toolbox-1.1.0.tar.gz (19.2 MB view details)

Uploaded Source

Built Distribution

DASPy_toolbox-1.1.0-py3-none-any.whl (19.3 MB view details)

Uploaded Python 3

File details

Details for the file DASPy-toolbox-1.1.0.tar.gz.

File metadata

  • Download URL: DASPy-toolbox-1.1.0.tar.gz
  • Upload date:
  • Size: 19.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.7

File hashes

Hashes for DASPy-toolbox-1.1.0.tar.gz
Algorithm Hash digest
SHA256 f05bedbdd06a021a405852b021847744c17f747e01f4f3779b3068b2342b10f9
MD5 9375ff2d981e30bd699e74ff587eff03
BLAKE2b-256 db55eceea1eab0a7deeaa0ed8712c64b76c6b3233ceaedb900d62353f3aeb07c

See more details on using hashes here.

File details

Details for the file DASPy_toolbox-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for DASPy_toolbox-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 85d909919b79bf5b47f0ab7350df46e290eb320bc8b731a17e783649d0c818e1
MD5 ab23e7c9a37beed14216a2d4a05c3a6b
BLAKE2b-256 470aebf0fc790a565dee6bcfa9209842cc768a98c4fed9715f04bd31c0178687

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page