DASPy is an open-source project dedicated to provide a python package for DAS (Distributed Acoustic Sensing) data processing, which comprises classic seismic data processing techniques and Specialized algorithms for DAS applications.
Project description
<img src=”./website/USTC.svg” height=”170” /> <img src=”./website/DAMS.png” height=”150” />
## DASPy
DASPy is an open-source project dedicated to provide a python package for DAS (Distributed Acoustic Sensing) data processing.
The goal of the DASPy project is to lower the bar of DAS data processing. DASPy includes: * Classic seismic data processing techniques, including preprocessing, filter, spectrum analysis, and visualization * Specialized algorithms for DAS applications, including denoising, waveform decomposition, channel attribute analysis, and strain-velocity conversion.
DASPy is licensed under the MIT License. [An English version of DASPy tutorial](https://daspy-tutorial.readthedocs.io/en/latest/), [a Chinese version of DASPy tutorial](https://daspy-tutorial-cn.readthedocs.io/zh-cn/latest/) and [the DASPy paper](document/srl-2024124.1.pdf) is available. If you have any questions, please contact me via <hmz2018@mail.ustc.edu.cn>.
## Installation DASPy is currently running on Linux, Windows and Mac OS. DASPy runs on Python 3.9 and up. We recommend you use the latest version of python 3 if possible.
### Pip (recommanded) ` pip install DASPy-toolbox `
Install the latest version from GitHub:
` pip install git+https://github.com/HMZ-03/DASPy.git `
### Conda ` conda install -c hmz-03 daspy `
If an error is reported, please try updating conda:
` conda update -n base -c conda-forge conda `
### Manual installation 1. Install dependent packages: numpy, scipy >=1.13, matplotlib, geographiclib, pyproj, h5py, segyio, nptdms, tqdm
Add DASPy into your Python path.
## Getting started ` from daspy import read sec = read() # load example waveform sec.bandpass(1, 15) sec.plot() ` <img src=”./website/waveform.png” height=”500” />
### Contributing
Please see details on how to contribute to the project [here](CONTRIBUTING.md) and [here](CodingStyleGuide.md).
### Reference
Minzhe Hu and Zefeng Li (2024), [DASPy: A Python Toolbox for DAS Seismology](https://pubs.geoscienceworld.org/ssa/srl/article/95/5/3055/645865/DASPy-A-Python-Toolbox-for-DAS-Seismology), Seismological Research Letters, 95(5), 3055–3066, doi: https://doi.org/10.1785/0220240124.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file DASPy-toolbox-1.1.0.tar.gz
.
File metadata
- Download URL: DASPy-toolbox-1.1.0.tar.gz
- Upload date:
- Size: 19.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f05bedbdd06a021a405852b021847744c17f747e01f4f3779b3068b2342b10f9 |
|
MD5 | 9375ff2d981e30bd699e74ff587eff03 |
|
BLAKE2b-256 | db55eceea1eab0a7deeaa0ed8712c64b76c6b3233ceaedb900d62353f3aeb07c |
File details
Details for the file DASPy_toolbox-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: DASPy_toolbox-1.1.0-py3-none-any.whl
- Upload date:
- Size: 19.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85d909919b79bf5b47f0ab7350df46e290eb320bc8b731a17e783649d0c818e1 |
|
MD5 | ab23e7c9a37beed14216a2d4a05c3a6b |
|
BLAKE2b-256 | 470aebf0fc790a565dee6bcfa9209842cc768a98c4fed9715f04bd31c0178687 |