Skip to main content

A collection of useful util functions

Project description

Anomaly Detection and Explanation

We develop deep learning model that detects and explain anomaly in multivariate time series data.

Our model is based on Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR'22). We train and evaluate the model on DBSherlock dataset.

Anomaly Transformer

Anomaly transformer is a transformer-based model that detects anomaly in multivariate time series data. It is based on the assumption that the normal data is highly correlated, while the abnormal data is not. It uses a transformer encoder to learn the correlation between different time steps, and then uses a discriminator to distinguish the normal and abnormal data based on the learned correlation.

  • An inherent distinguishable criterion as Association Discrepancy for detection.
  • A new Anomaly-Attention mechanism to compute the association discrepancy.
  • A minimax strategy to amplify the normal-abnormal distinguishability of the association discrepancy.

For more details, please refer to the paper.

Environment Setup

Start docker container using docker compose, and login to the container

docker compose up -d

Install python packages

pip install -r requirements.txt

Prepare Dataset

Download

Download DBSherlock dataset.

python scripts/dataset/download_datasets.py

Append --download_all argument to download all datasets (i.e., SMD, SMAP, PSM, MSL, and DBSherlock).

python scripts/dataset/download_datasets.py --download_all

Preprocess data

Convert DBSherlock data (.mat file to .json file):

python src/data_factory/dbsherlock/convert.py \
    --input dataset/dbsherlock/tpcc_16w.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpcc_16w

python src/data_factory/dbsherlock/convert.py \
    --input dataset/dbsherlock/tpcc_500w.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpcc_500w

python src/data_factory/dbsherlock/convert.py \
    --input dataset/dbsherlock/tpce_3000.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpce_3000

Convert DBSherlock data into train & validate data for Anomaly Transformer:

python src/data_factory/dbsherlock/process.py \
    --input_path dataset/dbsherlock/converted/tpcc_16w_test.json \
    --output_path dataset/dbsherlock/processed/tpcc_16w/

python src/data_factory/dbsherlock/process.py \
    --input_path dataset/dbsherlock/converted/tpcc_500w_test.json \
    --output_path dataset/dbsherlock/processed/tpcc_500w/

python src/data_factory/dbsherlock/process.py \
    --input_path dataset/dbsherlock/converted/tpce_3000_test.json \
    --output_path dataset/dbsherlock/processed/tpce_3000/

Train and Evaluate

We provide the experiment scripts under the folder ./scripts. You can reproduce the experiment results with the below script:

bash ./scripts/experiment/DBS.sh

or you can run the below commands to train and evaluate the model step by step.

Training

Train the model on DBSherlock dataset:

python main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode train

Evaluating

Evaluate the trained model on the test split of the same dataset:

python main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode test 

Inference

Perform inference on time series data with the trained model:

python main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode infer
    --output_path results/EDA/

Reference

This respository is based on Anomaly Transformer.

@inproceedings{
xu2022anomaly,
title={Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy},
author={Jiehui Xu and Haixu Wu and Jianmin Wang and Mingsheng Long},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=LzQQ89U1qm_}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbanomtransformer-0.1.2.tar.gz (56.3 MB view details)

Uploaded Source

Built Distribution

dbanomtransformer-0.1.2-py3-none-any.whl (37.2 kB view details)

Uploaded Python 3

File details

Details for the file dbanomtransformer-0.1.2.tar.gz.

File metadata

  • Download URL: dbanomtransformer-0.1.2.tar.gz
  • Upload date:
  • Size: 56.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for dbanomtransformer-0.1.2.tar.gz
Algorithm Hash digest
SHA256 89d0e1c1a48f6eddb8d2b9987659da2f4b05b5affb6cd2befe128e29a35e3888
MD5 c189799f5c72fa25a38d515676ce7de0
BLAKE2b-256 040101f9133d624bdf87a2b6a0596ad7a74a4e81d2832dabe299a72e716ee950

See more details on using hashes here.

File details

Details for the file dbanomtransformer-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for dbanomtransformer-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f9d7a33937f0781cc6d59fb2e0e35204893302d58c00eca71ba9f2fb7cf1af6b
MD5 d541c1f7de82f3d31df72635a419c8be
BLAKE2b-256 596d0e02ab42278217f8e919f429e72036dadc652343adc2f886e2b768595b29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page