Skip to main content

Deep-learning Designer: Deep-Learning Training Optimization & Layers API(like Keras)

Project description

[DDesigner API] Deep-learning Designer API

1. About

1.1. DDesignerAPI?

It is a API for deep-learning learning and inference, and an API for application development using multi-platform

1.2. Functions

1.2.1. Layers and Blocks

  • Accelerator enabled layers and the ability to define special layers that are not defined in Keras and others
  • A function that defines a combination of layers as a block and easily composes a block (ex. CONV + BN + ACT + DROPOUT= ConvBlock)

1.2.2. Optimization for Accelerator Usage (XWN)

  • Optimized function to use accelerator


2. Support

2.1. Platforms

  • Tensorflow 2.6.0
  • PyTorch 1.13.1

2.2. Components of Network

2.2.1. Layers

  • Accelerator enabled layers and Custom layers that perform specific functions

2.2.1.1. Summary

Operation Support Train Platform Support TACHY Accelerator
Convolution TF / Keras / PyTorch O
TransposeConvolution TF / Keras / PyTorch O
CascadeConvolution Keras / PyTorch O

2.2.1.2. Detail

  • Convolution : 1D, 2D with XWN optimization
  • TransposeConvolution : 1D, 2D with XWN optimization
  • CascadeConvolution : A Layer that decomposes a layer with large kernel into multiple layers with smaller kernels to lighten the model / 1D, 2D with XWN optimization

2.2.2. Blocks

  • A set of defined layers for user convenience

2.2.2.1. Summary

Platform ConvBlock TConvBlock FCBlock
TF-Keras 1D/2D 2D TODO
PyTorch TODO TODO TODO

2.2.2.2. Detail

  • ConvBlock : Convolution N-D Block (CONV + BN + ACT + DROPOUT), support Conv1DBlock, Conv2DBlock
  • TConvBlock : Transpose Convolution 2D Block (TCONV + BN + ACT + DROPOUT), support TConv2DBlock
  • CascadeConvBlock : Cascade Convolution N-D Block (CONV + BN + ACT + DROPOUT), support CascadeConv1DBlock, CascadeConv2DBlock

2.3. XWN (Applies only to convolution operations)

2.3.1. Transform Configuration (data type / default value / description)

  • transform : bool / False / Choose whether to use
  • bit : int / 4 / Quantization range (bit-1 ** 2)
  • max_scale : float / 4.0 / Max value

2.3.2. Pruning Configuration

  • pruning : bool / False / Choose whether to use
  • prun_weight : float / 0.5 / Weights for puning edge generation

2.3.3. Summary

Platform Conv TransposeConv CascadeConv
TF 1D/2D 1D/2D TODO
Keras 1D/2D 1D/2D TODO
PyTorch 1D/2D 1D/2D 1D/2D



3. Command Usage

3.1. XWN

3.1.1. Single Convolution

3.1.1.1. Tensorflow

    >>> from ddesigner_api.tensorflow.xwn import tf_nn as nn
    >>> nn.conv2d(
            x,
            kernel,
            ...
            use_transform=True,
            bit=4,
            max_scale=4.0,
            use_pruning=False
        )

3.1.1.2. Keras

    >>> from ddesigner_api.tensorflow.xwn import keras_layers as klayers
    >>> klayers.Conv2D(
            2, 3, 
            ...
            use_transform=True,
            bit=4,
            max_scale=4.0
            use_pruning=True,
            prun_weight=0.5
        )

3.1.1.3. PyTorch

    >>> from ddesigner_api.pytorch.xwn import torch_nn as nn
    >>> nn.Conv2d(
            in_channels=1,
            out_channels=2,
            ...
            use_transform=True,
            bit=4,
            max_scale=4.0,
            use_pruning=False
        )

3.1.2. Custum Layer and Block (CascadeConv, ...)

3.1.2.1. Keras

    >>> from ddesigner_api.tensorflow import dpi_layers as dlayers
    >>> dlayers.CascadeConv2d(
            2, 3, 
            ...
            transform=4,
            max_scale=4.0,
            pruning=None,
        )

3.1.2.2. PyTorch

    >>> from ddesigner_api.pytorch import dpi_nn as dnn
    >>> dnn.CascadeConv2d(
            16, # in_channels 
            32, # out_channels
            7, # kernel_size
            stride=(1,1), 
            bias=False,
            ...
            transform=4,
            max_scale=4.0,
            pruning=None,
        )

3.2. Blocks

3.2.1. Keras

3.2.1.1. Conv1DBlock

    >>> from ddesigner_api.tensorflow import dpi_blocks as db
    >>> dtype='mixed_float16'
    >>> db.Conv1DBlock(
            64, 3, strides=1, padding='SAME', use_bias=False,
            activation=tf.keras.layers.ReLU(dtype=dtype), 
            batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), 
            dtype=dtype,
            transform=4, max_scale=4.0,
            pruning=0.5
        )

3.2.1.2. Conv2DBlock

    >>> from ddesigner_api.tensorflow import dpi_blocks as db
    >>> dtype='mixed_float16'
    >>> db.Conv2DBlock(
            64, (3,3), strides=(1,1), padding='SAME', use_bias=False,
            activation=tf.keras.layers.ReLU(dtype=dtype), 
            batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), 
            dtype=dtype,
            transform=4, max_scale=4.0,
            pruning=0.5
        )

3.2.1.3. TConv2DBlock

    >>> from ddesigner_api.tensorflow import dpi_blocks as db
    >>> dtype='mixed_float16'
    >>> db.TConv2DBlock(
            64, (3,3), strides=(2,2), padding='SAME', use_bias=False,
            activation=tf.keras.layers.ReLU(dtype=dtype), 
            batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), 
            dtype=dtype,
            transform=4, max_scale=4.0,
            pruning=0.5
        )

3.3. Examples

  • An example of comparing and printing results before optimization(XWN) and after XWN for the same input on a supported platform.

3.3.1. Tensorflow

    >>> import ddesigner_api.tensorflow.examples.examples_tensorflow as ex
    >>> ex.main()
    >>> ====== TENSORFLOW Examples======
    >>> 1: Fixed  Float32 Input Conv2D
    >>> q: Quit
    >>> Select Case: ...

3.3.2. Keras

    >>> import ddesigner_api.tensorflow.examples.examples_keras as ex
    >>> ex.main()
    >>> ====== KERAS Examples======
    >>> 1: Fixed  Float32 Input Conv2D
    >>> 2: Random Float32 Input Conv2D
    >>> 3: Random Float32 Input Conv2DTranspose
    >>> 4: Random Float16 Input Conv2D
    >>> q: Quit
    >>> Select Case: ...

3.3.3. PyTorch

    >>> import ddesigner_api.pytorch.examples.examples_pytorch as ex
    >>> ex.main()
    >>> ====== PYTORCH Examples======
    >>> 1: Fixed  Float32 Input Conv2D
    >>> 2: Random Float32 Input Conv2D
    >>> 3: Fixed  Float32 Input Conv1D
    >>> 4: Fixed  Float32 Input Conv1DTranspose
    >>> 5: Random Float32 Input CascadeConv2D
    >>> 6: Random Float32 Input CascadeConv1D
    >>> q: Quit
    >>> Select Case: ...

3.3.4. Numpy

    >>> import ddesigner_api.numpy.examples.examples_numpy as ex
    >>> ex.main()
    >>> ====== NUMPY Examples======
    >>> 1: XWN Transform
    >>> 2: XWN Transform and Pruning
    >>> q: Quit
    >>> Select Case: ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

DDesignerAPI-0.0.5.5-py3-none-any.whl (64.2 kB view details)

Uploaded Python 3

File details

Details for the file DDesignerAPI-0.0.5.5-py3-none-any.whl.

File metadata

File hashes

Hashes for DDesignerAPI-0.0.5.5-py3-none-any.whl
Algorithm Hash digest
SHA256 bf89ac59e3596e09c14c14cb275ce4b7960e63020387d93693923ed01586ba93
MD5 f841ef932f25ddac91708609321c8c38
BLAKE2b-256 0eddb98bf3e1b179de930a5cf9bc47a99d6726f172229776f46c9590de23e436

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page