Skip to main content
Help us improve Python packaging – donate today!

A simple derivative-free solver for (box constrained) nonlinear least-squares minimization

Project Description

DFO-GN is a package for solving nonlinear least-squares minimisation, without requiring derivatives of the objective.

This is an implementation of the algorithm from our paper: A Derivative-Free Gauss-Newton Method, C. Cartis and L. Roberts, submitted (2017).

Documentation

See manual.pdf or here.

Requirements

DFO-GN requires the following software to be installed:

Additionally, the following python packages should be installed (these will be installed automatically if using pip, see Installation using pip):

Installation using pip

For easy installation, use pip as root:

$ [sudo] pip install --pre dfogn

If you do not have root privileges or you want to install DFO-GN for your private use, you can use:

$ pip install --pre --user dfogn

which will install DFO-GN in your home directory.

Note that if an older install of DFO-GN is present on your system you can use:

$ [sudo] pip install --pre --upgrade dfogn

to upgrade DFO-GN to the latest version.

Manual installation

The source code for DFO-GN is available on Github:

$ git clone https://github.com/numericalalgorithmsgroup/dfogn
$ cd dfogn

DFO-GN is written in pure Python and requires no compilation. It can be installed using:

$ [sudo] pip install --pre .

If you do not have root privileges or you want to install DFO-GN for your private use, you can use:

$ pip install --pre --user .

instead.

Testing

If you installed DFO-GN manually, you can test your installation by running:

$ python setup.py test

Alternatively, the documentation provides some simple examples of how to run DFO-GN, which are also available in the examples directory.

Release history Release notifications

This version
History Node

0.2

History Node

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
DFOGN-0.2.tar.gz (34.5 kB) Copy SHA256 hash SHA256 Source None Feb 20, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page