Skip to main content

A PyTorch based software platform for teaching the Deep Learning class at Purdue University

Project description

Consult the module API page at

https://engineering.purdue.edu/kak/distDLS/DLStudio-2.5.1.html

for all information related to this module, including the information about the latest changes to the code.

convo_layers_config = "1x[128,3,3,1]-MaxPool(2) 1x[16,5,5,1]-MaxPool(2)"
fc_layers_config = [-1,1024,10]

dls = DLStudio(
                  dataroot = "/home/kak/ImageDatasets/CIFAR-10/",
                  image_size = [32,32],
                  convo_layers_config = convo_layers_config,
                  fc_layers_config = fc_layers_config,
                  path_saved_model = "./saved_model",
                  momentum = 0.9,
                  learning_rate = 1e-3,
                  epochs = 2,
                  batch_size = 4,
                  classes = ('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'),
                  use_gpu = True,
                  debug_train = 0,
                  debug_test = 1
              )

configs_for_all_convo_layers = dls.parse_config_string_for_convo_layers()
convo_layers = dls.build_convo_layers2( configs_for_all_convo_layers )
fc_layers = dls.build_fc_layers()
model = dls.Net(convo_layers, fc_layers)
dls.show_network_summary(model)
dls.load_cifar_10_dataset()
dls.run_code_for_training(model)
dls.run_code_for_testing(model)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DLStudio-2.5.1.tar.gz (366.5 kB view details)

Uploaded Source

File details

Details for the file DLStudio-2.5.1.tar.gz.

File metadata

  • Download URL: DLStudio-2.5.1.tar.gz
  • Upload date:
  • Size: 366.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for DLStudio-2.5.1.tar.gz
Algorithm Hash digest
SHA256 12b5e2827e5b2a23aa19edab15464ae8c938154820213fe9f04ef4952b263db6
MD5 85678a870eebab282789bc054dee2d3d
BLAKE2b-256 a7b9b4996232754f32757a06ef9b7d07e49c7c650c4489309287ceaae313291d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page