Skip to main content

Lightweight data-centric framework for working with scientific data

Project description

DLite

A lightweight data-centric framework for semantic interoperability

PyPi CI tests Documentation DOI

DLite is a C implementation of the SINTEF Open Framework and Tools (SOFT), which is a set of concepts and tools for using data models (aka Metadata) to efficiently describe and work with scientific data.

DLite overview

The core of DLite is a framework for formalised representation of data described by data models (called Metadata or Entity in DLite). On top of this, DLite has a plugin system for various representations of the data in different formats and storages, as well as bindings to popular languages like Python, mappings to ontological concepts for enhanced semantics and a set of tools.

Documentation

The official documentation for DLite can be found on https://sintef.github.io/dlite/.

Installation

DLite is available on PyPI and can be installed with pip

pip install dlite-python[full]

The bracket [full] is optional, but ensures that you install all optional dependencies together with DLite. Without [full] you get a minimal DLite installation that only depends on NumPy. This would disable most storage plugins, except for the built-in "json", "bson" and "rdf" (when compiled against Redland librdf). For alternative installation methods, see the installation instructions.

Usage

All data in DLite is represented by a instance, which is described by a simple data model (aka Metadata). An Instance is identified by a unique UUID and have a set of named dimensions and properties. The dimensions are used to describe the shape of multi-dimensional properties.

DLite Metadata are identified by an URI and have an (optional) human readable description. Each dimension is given a name and description (optional) and each property is given a name, type, shape (optional), unit (optional) and description (optional). The shape of a property refers to the named dimensions. Foe example, a Metadata for a person serialised in YAML may look like:

uri: http://onto-ns.com/meta/0.1/Person
description: A person.
dimensions:
  nskills: Number of skills.
properties:
  name:
    type: string
    description: Full name.
  age:
    type: float32
    unit: year
    description: Age of person.
  skills:
    type: string
    shape: [nskills]
    description: List of skills.

Assume that you have file Person.yaml with this content. In Python, you can load this Metadata with

import dlite
Person = dlite.Instance.from_location("yaml", "Person.yaml", options="mode=r")

where the first argument is the "driver", i.e. the name of storage plugin to use for loading the Metadata. The options argument is optional. By providing "mode=r" you specify that the storage is opened in read-only mode.

You can verify that Person is a Metadata

>>> isinstance(Person, dlite.Metadata)
True

We can create an instance of Person with

holmes = Person(
    dimensions={"nskills": 4},
    properties={
      "name": "Sherlock Holmes",
      "skills": ["observing", "chemistry", "violin", "boxing"],
    }
)

The dimensions argument must be supplied when a Metadata is instantiated. It ensures that the shape of all properties are initialised consistently. The properties argument is optional. By specifying it, we initialise the properties to the provided values (otherwise, they will be initialised to zero).

In this case we didn't initialised the age

>>> holmes.age
0.0
>>> holmes.age = 34  # Assign the age

If you have Pint installed, you can also specify or access the age as a quantity with unit

>>> holmes.q.age = "34year"
>>> holmes.q.age
<Quantity(34, 'year')>
>>> holmes.q.age.to("century").m
0.34

We can view (a JSON representation of) the instance with

>>> print(holmes)
{
  "uuid": "314ac1ad-4a7e-477b-a56c-939121355112",
  "meta": "http://onto-ns.com/meta/0.1/Person",
  "dimensions": {
    "nskills": 4
  },
  "properties": {
    "Sherlock Holmes" {
      "age": 34.0,
      "skills": [
        "observing",
        "chemistry",
        "violin",
        "boxing"
      ]
    }
  }
}

The instance can also be stored using the save() method

holmes.save("yaml", "holmes.yaml", "mode=w")

which will produce the a YAML file with the following content

8cbd4c09-734d-4532-b35a-1e0dd5c3e8b5:
  meta: http://onto-ns.com/meta/0.1/Person
  dimensions:
    nskills: 4
  properties:
    Sherlock Holmes:
      age: 34.0
      skills:
      - observing
      - chemistry
      - violin
      - boxind

This was just a brief example. There is much more to DLite as will be revealed in the documentation.

License

DLite is licensed under the MIT license. However, it include a few third party source files with other permissive licenses. All of these should allow dynamic and static linking against open and propritary codes. A full list of included licenses can be found in LICENSES.txt.

Acknowledgment

In addition from internal funding from SINTEF and NTNU this work has been supported by several projects, including:

  • AMPERE (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • FICAL (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • Rational alloy design (ALLDESIGN) (2018-2022) NTNU internally funded project.
  • SFI Manufacturing (2015-2023) funded by Forskningsrådet and Norwegian industry partners.
  • SFI PhysMet (2020-2028) funded by Forskningsrådet and Norwegian industry partners.
  • OntoTrans (2020-2024) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 862136.
  • OpenModel (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953167.
  • DOME 4.0 (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953163.
  • VIPCOAT (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 952903.
  • MEDIATE (2022-2025) that receives funding from the RCN, Norway; FNR, Luxenburg; SMWK Germany via the M-era.net programme, project9557,
  • MatCHMaker (2022-2026) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 101091687.

DLite is developed with the hope that it will be a delight to work with.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dlite_python-0.5.16.tar.gz (16.2 kB view details)

Uploaded Source

Built Distributions

DLite_Python-0.5.16-cp312-cp312-win_amd64.whl (379.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

DLite_Python-0.5.16-cp312-cp312-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.16-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

DLite_Python-0.5.16-cp311-cp311-win_amd64.whl (378.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

DLite_Python-0.5.16-cp311-cp311-musllinux_1_1_x86_64.whl (411.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.16-cp311-cp311-musllinux_1_1_i686.whl (405.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

DLite_Python-0.5.16-cp311-cp311-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

DLite_Python-0.5.16-cp310-cp310-win_amd64.whl (378.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

DLite_Python-0.5.16-cp310-cp310-musllinux_1_1_x86_64.whl (409.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.16-cp310-cp310-musllinux_1_1_i686.whl (404.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

DLite_Python-0.5.16-cp310-cp310-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

DLite_Python-0.5.16-cp39-cp39-win_amd64.whl (378.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

DLite_Python-0.5.16-cp39-cp39-musllinux_1_1_x86_64.whl (409.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.16-cp39-cp39-musllinux_1_1_i686.whl (404.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

DLite_Python-0.5.16-cp39-cp39-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

DLite_Python-0.5.16-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.16-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

DLite_Python-0.5.16-cp38-cp38-win_amd64.whl (378.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

DLite_Python-0.5.16-cp38-cp38-musllinux_1_1_x86_64.whl (410.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.16-cp38-cp38-musllinux_1_1_i686.whl (403.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

DLite_Python-0.5.16-cp38-cp38-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

DLite_Python-0.5.16-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.16-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

DLite_Python-0.5.16-cp37-cp37m-win_amd64.whl (376.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

DLite_Python-0.5.16-cp37-cp37m-musllinux_1_1_x86_64.whl (411.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

DLite_Python-0.5.16-cp37-cp37m-musllinux_1_1_i686.whl (404.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

DLite_Python-0.5.16-cp37-cp37m-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.16-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

DLite_Python-0.5.16-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.16-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file dlite_python-0.5.16.tar.gz.

File metadata

  • Download URL: dlite_python-0.5.16.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dlite_python-0.5.16.tar.gz
Algorithm Hash digest
SHA256 4f3474a0c554c1edcedd3c2e283b9b89808e74be704f03334f3a7e30c6d78259
MD5 06bd86c9760f5676bc38c61eb759f9b1
BLAKE2b-256 aca3784420de7d50ae6ae76a90c6edf2b2a099905159c4fc1e90036e0837406c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2c4a22f35b9f36ee65e2e50c47caf41a76c21877327ec58cb0fe29c31957d39d
MD5 c3042f4d3750cfa3df0f413aedf56519
BLAKE2b-256 7c9a68851bac9940a3ae398576dd9c17b48c145db2542cca244e3f2aa61d3d57

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3ef5ddefee8f406f9665a9e6650655a040011fbe716926ad6e1619c5b10b71f1
MD5 1690733a4ee201fff99cf35bfc56b636
BLAKE2b-256 166824c1b50e875c4e2b5e87f4608ee71d4502ee849028f3dc640f648a1f7ecf

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29e9ebd9bd45a42439130b119be1ec618ada10deb1e9e5a9f70a85ca0ca0946d
MD5 0c46f18aedc2de3889ea49b56652f54a
BLAKE2b-256 636b7597704a2a714aea0d1f4899b1f127a5c38d40464969429b1d733556826c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 79e5ca134b85c3655f7929d5a052fffb0d50c4035136e1ac7fba31312c9ba698
MD5 a60e8d5717a2b8f2969ffbd0908b5dd6
BLAKE2b-256 38e9f12971f69822f1431abc18db8b324700cc2269d634975e286dd29da6fd7c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 57dcaaecb69c5ca53cfdf1fccde60e8ae2d7e040cc4932d5d615830318451e26
MD5 c3c7ca480e015ee4bd54af85414c5c0e
BLAKE2b-256 6fd61835e50b831653b5098d6bdf359f73af3756afa35cef1884be47ae8cc888

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2411ae2a2ea2546e28c704fe5155c676dde7bd7ae848d56488d6b2c20c075418
MD5 d066100eeb7c6f463b29f2bf4d520b98
BLAKE2b-256 c1e03063861b2c518063c417a02c758acb5aa4dc595634b5711143d50241b2fa

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a8ce84a1ef6f8d1cf3d60388a77ac2f55fa5175dcb64b4f19b7477623c89af10
MD5 a496b3eb8e9f2867b3bf58fa28f615b0
BLAKE2b-256 d25afcfcd5d03157934557a7d68c2d64a3a8fc008a188e2dddf305462a88cffd

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aafb6763c628ecfa77ecfd07320124f8dd64ee06a778e9379e7e28b4e35e8598
MD5 a9a18ff39ccb175c9b5358456a47199c
BLAKE2b-256 f63f636913389d2f12421bc276b6509bd09b85c69b25c8cb949076c4562c34aa

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a4982eb9750f48320aecfb21fe006a5a56f754ced10736ce2c401132293ccd9
MD5 6ada1812805aae625fe3d03c0c3f7efb
BLAKE2b-256 56b8ab92ff7e47e764fffd4c1ef47ae9fa25bf395523635a0a6eb1b10cee4993

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d3b52e7a04b16085f645f5d9b4a90af7fd39b0304b83a9bb7678884118e4d20c
MD5 1e095846f53d0d254490e2d930a2358a
BLAKE2b-256 a84dc5a43e46c93a124d931cb2046699fba0bfc6e915843961f1ff6b409ebf25

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3beea324b9d2560efd59252abef0858f047550bcfea80bad51c2847067db0a29
MD5 b225385067124e2d280285b8feaede23
BLAKE2b-256 05830bab312cbcd324568470f8dac09dd9ca6ff637cebc9fe16477e167c743b1

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 99493940bb456f97f7d9c3fcf0b27c4889c315ea1f6a637437f15416020d9dce
MD5 521d8a06b0684c2689774b30383dfd3b
BLAKE2b-256 7f9a4c7abd376503a220841ae0d7aebf1de3d4675049bf74bda58816e79b5614

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c25c59428cd59aa1589e7878c3bf590a5e0a7d013ffae854df3f738166be5c76
MD5 e4ecec50ae4194e7957ca1753b7d66df
BLAKE2b-256 c2489709389918da956e5729027920ee3877be5b59f60ed90c0cba75dec3026a

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cb67f30f76bbb72f69f7f7d7c545e3174efc4826c10911acea18309dff9296d0
MD5 c75f8a01629a78f68c814daabd4784cc
BLAKE2b-256 6853514eb44d499822fc9d4863cd9354f498fc19c071de426b76bf93af7fe762

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 670293c9dfee5bf473b5c715473f690c1703d0b40c7316d395812237133b22c9
MD5 962ee3ba8b993cff70a74a8ba260cf35
BLAKE2b-256 9ad3e54683c0cd5e7ffabe37dfcb65ddff330b6ba0e44b827ddb6c3b0971c5fb

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 72e7f66e60bbb65412ee74ac788f849942ce036f841e602f28dc73a440cbec17
MD5 68ae889d975f548df99ef82b0a7051e1
BLAKE2b-256 aa5524bb1fab7c320e3aa89afa66eaa530bbb2e2176ffe4066eb393978abd5c6

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f0d7e92f998c780f23c1f12500d948c356ddc4e00357152c624c4f4b1bac5ca7
MD5 f080df87e24e0be31e1dc5e97a5057d1
BLAKE2b-256 c5111bbe60c5577b49f5b6983035d68809cc5c8f23d98034fcace8f02d62b0a5

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a3c4d01062cc5ff129e0d70fd2e0bf3fc705b9fadb077f6c1de303b9c20c69bf
MD5 c32cd7aee2d6e77e857df1846fa06cbc
BLAKE2b-256 faf349b1e70de0e4d44a92ab7df2cdcf997042f1945449a6a3444cb1e47ab313

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 64912499365ada6a84a7a16569331b7c29cd8be42bdfe23e93000a76dce17398
MD5 79d1d70b329e69fce709e5b9ec082229
BLAKE2b-256 3b32cc75680e2cad843dfec1da2ae2ff0ed8624c054e59655111717b64288c62

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7c9393f22db658a2ae0461144611e3c63f5983e879120d9c6c59810c8e5fade5
MD5 582f6c8c7c045d3f2c9cc80303f4bd86
BLAKE2b-256 67b419dece79ab35e0ccf09af2a547b83756bae92666e0d684dd22b6a45eb218

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 370b0537d0aa46abbaa36bde5c8f99cd09303683f57898013865286d5326149e
MD5 a4d7271b6628718eea33e362c7340c01
BLAKE2b-256 14c3eedbb59c5c0573d24db38e8867a592e381ee6b4bcb21808601a9aed7d89a

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8ac1cf0e8a8d93ba44f9a4a0a2629ee6fc2c982cf9b9b6c925aa9e47c4c74fb7
MD5 9bd9890a8276297e49bbd8be0266fe57
BLAKE2b-256 be7caae2b6a5e27892d4348de211f192e22ea608c7274ec12b201d0feba9efe8

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2174833671721f1866893d69baa71eb69da08301a59ea18bdbf0822d756284fd
MD5 c972ccdd80ba7bc950d0bcd2f0942fa8
BLAKE2b-256 2aea8010e22db59c579f50336334273c427ebb0e845541090077caab89518d3b

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 49eecc8421b40b486b187041ec2e29912733f5c2c07f1b60c00557d1f40b1831
MD5 c0798ab78391759094144c65b8226303
BLAKE2b-256 919d7c110e5021d37abab446e0b4634d8f0088073f46ef20aaf18403d11ad10e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 46101be5600916b8b97c7e7c8e0abe8128dafbfbff6cadbbf8ce03f1e5fe3f25
MD5 166a4336eeb724c8c29c1f4d6119d313
BLAKE2b-256 54970204bdc71cdf17b5a9c4f7544b0fe7c41f09059e891e16e46106afe4ca42

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 23222b929bfedba09a3bbac8d7ca1438c94de5f304048fcd400f1304bf57eb27
MD5 e2627ed660c6236b478f0c83d0bc68a9
BLAKE2b-256 3bc5e4985bf3e111c11d82058c25da926d8d0381182345581880fe33f2357b7c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 516974454ec258ba3bab70972ddc0d2b733be81fa5cde6f4266f2c1ca06fbf3b
MD5 056086298450e31197f42b65389970be
BLAKE2b-256 2c66e19a14ff7ae9ea0097c95623c4a99d46632212c0b11546441a800044787b

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a6dcaa9225200fed897901404c3f8ea4d6745a1ded4a09d0b9a44e22c2812336
MD5 b28c54d4fb4ea9beee781fa3f567ceaf
BLAKE2b-256 e4c157a729edc3d4be23f2b848200472748e73d5f2c1077ff2a6a532da9d0734

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a50568dfae0fc4d897044b6514602d7d1c6a896617291013d324b675302b4afc
MD5 257a947e9ea1317777e3bb49689d640d
BLAKE2b-256 0923d8c82e84175a0efde90ea8dd2e7d6ad5380f21f0bfe51fc109ec2ae124b8

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3fadf98a996d29e237247755029f9258793b033a6c83d9a173958cdb5d83e514
MD5 fea327919d032aa0a14e6cbbb068f03a
BLAKE2b-256 061a3d588b591f7cc4bd36b9cf93790c143621857ee38e6c251941320805cf15

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d09051d99fdd05c6518519d629a691bbbb40b30d4334afd4a96dd922fffac4fe
MD5 bab064004fdae22621c15c26a4d44b61
BLAKE2b-256 84a60d853d25ece7de5a7e1a6de57677a4213d5497e36f44be46eb0ebf43f94e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 910e6d13a0738495b078b5ee5602b657622a2041f1c66d14cdce18736b2e9bcf
MD5 de37abece27f492956da83be00654bd0
BLAKE2b-256 bcd1e175ac4a3f6f777ac207fe8e14398cb468e1ea7b5b20ef5f91c36cdf4ed5

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 744d31ad17edb778881a88bd06038a57022565f6ddebfb3c7d06e3bfecb2efaa
MD5 6fe39ad3aea6a86b23ff5c425e20b805
BLAKE2b-256 c259ed664470f57eea5379246947f152b318604f8197d451258c6d869b222440

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 79c3ee66733d974052831707bc0541abc92e63ad0c5a340d37c4de6d81c4d933
MD5 154c1e2a7607f29b2923878e5847564b
BLAKE2b-256 0a1ed1cef90a94400e753fd4d5bdcbf1fcf29336d18daa220aabf14a82b74934

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f4eb6d154eb8b05529ea793d0acf7f2043714d758621320404f2529bccc5041e
MD5 8348e9e56888189e927101ce4cc941f1
BLAKE2b-256 77eebd724efed5846ede942df4b8155de0b72684a5aabbea0e5f2c7a0809d019

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a8a37f0bb35ad31ef6d22ffc4bf06028141a5f3ad6419b566d1d9e1847db69b2
MD5 73edfcadefb88c62a5323c51755ea07c
BLAKE2b-256 b41a515cf293f70c7412900eb770839b738aff2d91be1735bd562df81b4eb22d

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d26daa3fa3c92998e9ba1a8b9868ae2116478c0feb2e613c69d19a15659b5c6
MD5 58e0213e2a9e276f204e4b29484215bb
BLAKE2b-256 cb97b6bc9a8b842a53b84874e9c656813f04a9f7c1bca3d9be603bbd8cf30a47

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 19d13afaaf80f3d30c18f9355d3e38b7bfe7f0564c5ba6e58dc9882d143f850d
MD5 56cc37e386786cdb5f28acf4211a317c
BLAKE2b-256 eca0f69716082d6cb722a861176642e961a2c7e8c0ffbe31c178834e7ac11b38

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5e439d428b315a2cbd8dd38f40def26ede5e9d9c016b1ff96b2872de229f5fde
MD5 274481be51aad9b7acebad6eb09202b7
BLAKE2b-256 83e681a95e4a729be08621f90c00a67e09f43e977c6a1bd4088a1f14380f63ee

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.16-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.16-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0c48e006938be836f242e4c50f73383cd30abf052d68f3a2862f26f07e8572a3
MD5 11a6c19ff448b80f356bbbce82d2bae7
BLAKE2b-256 ccb52482b4e25a4dc67713b43596a25a6acfc733633a5eba68a3e2b06cff3a0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page