Skip to main content

Lightweight data-centric framework for working with scientific data

Project description

DLite

A lightweight data-centric framework for semantic interoperability

PyPi CI tests Documentation DOI

DLite is a C implementation of the SINTEF Open Framework and Tools (SOFT), which is a set of concepts and tools for using data models (aka Metadata) to efficiently describe and work with scientific data.

DLite overview

The core of DLite is a framework for formalised representation of data described by data models (called Metadata or Entity in DLite). On top of this, DLite has a plugin system for various representations of the data in different formats and storages, as well as bindings to popular languages like Python, mappings to ontological concepts for enhanced semantics and a set of tools.

Documentation

The official documentation for DLite can be found on https://sintef.github.io/dlite/.

Installation

DLite is available on PyPI and can be installed with pip

pip install dlite-python[full]

The bracket [full] is optional, but ensures that you install all optional dependencies together with DLite. Without [full] you get a minimal DLite installation that only depends on NumPy. This would disable most storage plugins, except for the built-in "json", "bson" and "rdf" (when compiled against Redland librdf). For alternative installation methods, see the installation instructions.

Usage

All data in DLite is represented by a instance, which is described by a simple data model (aka Metadata). An Instance is identified by a unique UUID and have a set of named dimensions and properties. The dimensions are used to describe the shape of multi-dimensional properties.

DLite Metadata are identified by an URI and have an (optional) human readable description. Each dimension is given a name and description (optional) and each property is given a name, type, shape (optional), unit (optional) and description (optional). The shape of a property refers to the named dimensions. Foe example, a Metadata for a person serialised in YAML may look like:

uri: http://onto-ns.com/meta/0.1/Person
description: A person.
dimensions:
  nskills: Number of skills.
properties:
  name:
    type: string
    description: Full name.
  age:
    type: float32
    unit: year
    description: Age of person.
  skills:
    type: string
    shape: [nskills]
    description: List of skills.

Assume that you have file Person.yaml with this content. In Python, you can load this Metadata with

import dlite
Person = dlite.Instance.from_location("yaml", "Person.yaml", options="mode=r")

where the first argument is the "driver", i.e. the name of storage plugin to use for loading the Metadata. The options argument is optional. By providing "mode=r" you specify that the storage is opened in read-only mode.

You can verify that Person is a Metadata

>>> isinstance(Person, dlite.Metadata)
True

We can create an instance of Person with

holmes = Person(
    dimensions={"nskills": 4},
    properties={
      "name": "Sherlock Holmes",
      "skills": ["observing", "chemistry", "violin", "boxing"],
    }
)

The dimensions argument must be supplied when a Metadata is instantiated. It ensures that the shape of all properties are initialised consistently. The properties argument is optional. By specifying it, we initialise the properties to the provided values (otherwise, they will be initialised to zero).

In this case we didn't initialised the age

>>> holmes.age
0.0
>>> holmes.age = 34  # Assign the age

If you have Pint installed, you can also specify or access the age as a quantity with unit

>>> holmes.q.age = "34year"
>>> holmes.q.age
<Quantity(34, 'year')>
>>> holmes.q.age.to("century").m
0.34

We can view (a JSON representation of) the instance with

>>> print(holmes)
{
  "uuid": "314ac1ad-4a7e-477b-a56c-939121355112",
  "meta": "http://onto-ns.com/meta/0.1/Person",
  "dimensions": {
    "nskills": 4
  },
  "properties": {
    "Sherlock Holmes" {
      "age": 34.0,
      "skills": [
        "observing",
        "chemistry",
        "violin",
        "boxing"
      ]
    }
  }
}

The instance can also be stored using the save() method

holmes.save("yaml", "holmes.yaml", "mode=w")

which will produce the a YAML file with the following content

8cbd4c09-734d-4532-b35a-1e0dd5c3e8b5:
  meta: http://onto-ns.com/meta/0.1/Person
  dimensions:
    nskills: 4
  properties:
    Sherlock Holmes:
      age: 34.0
      skills:
      - observing
      - chemistry
      - violin
      - boxind

This was just a brief example. There is much more to DLite as will be revealed in the documentation.

License

DLite is licensed under the MIT license. However, it include a few third party source files with other permissive licenses. All of these should allow dynamic and static linking against open and propritary codes. A full list of included licenses can be found in LICENSES.txt.

Acknowledgment

In addition from internal funding from SINTEF and NTNU this work has been supported by several projects, including:

  • AMPERE (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • FICAL (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • Rational alloy design (ALLDESIGN) (2018-2022) NTNU internally funded project.
  • SFI Manufacturing (2015-2023) funded by Forskningsrådet and Norwegian industry partners.
  • SFI PhysMet (2020-2028) funded by Forskningsrådet and Norwegian industry partners.
  • OntoTrans (2020-2024) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 862136.
  • OpenModel (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953167.
  • DOME 4.0 (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953163.
  • VIPCOAT (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 952903.
  • MEDIATE (2022-2025) that receives funding from the RCN, Norway; FNR, Luxenburg; SMWK Germany via the M-era.net programme, project9557,
  • MatCHMaker (2022-2026) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 101091687.

DLite is developed with the hope that it will be a delight to work with.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dlite_python-0.5.22.tar.gz (16.2 kB view details)

Uploaded Source

Built Distributions

DLite_Python-0.5.22-cp312-cp312-win_amd64.whl (387.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

DLite_Python-0.5.22-cp312-cp312-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.22-cp311-cp311-win_amd64.whl (385.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

DLite_Python-0.5.22-cp311-cp311-musllinux_1_1_x86_64.whl (418.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.22-cp311-cp311-musllinux_1_1_i686.whl (412.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

DLite_Python-0.5.22-cp311-cp311-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.22-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

DLite_Python-0.5.22-cp310-cp310-win_amd64.whl (385.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

DLite_Python-0.5.22-cp310-cp310-musllinux_1_1_x86_64.whl (417.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.22-cp310-cp310-musllinux_1_1_i686.whl (411.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

DLite_Python-0.5.22-cp310-cp310-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.22-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

DLite_Python-0.5.22-cp39-cp39-win_amd64.whl (385.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

DLite_Python-0.5.22-cp39-cp39-musllinux_1_1_x86_64.whl (417.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.22-cp39-cp39-musllinux_1_1_i686.whl (411.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

DLite_Python-0.5.22-cp39-cp39-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.22-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

DLite_Python-0.5.22-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.22-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

DLite_Python-0.5.22-cp38-cp38-win_amd64.whl (385.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

DLite_Python-0.5.22-cp38-cp38-musllinux_1_1_x86_64.whl (417.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.22-cp38-cp38-musllinux_1_1_i686.whl (411.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

DLite_Python-0.5.22-cp38-cp38-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.22-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

DLite_Python-0.5.22-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.22-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file dlite_python-0.5.22.tar.gz.

File metadata

  • Download URL: dlite_python-0.5.22.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for dlite_python-0.5.22.tar.gz
Algorithm Hash digest
SHA256 58a0a17cbeadb793169bb5a115cc9df760d66990ad916febd22457a3a1ff0b0d
MD5 ff6586c7fc960b4c014191051e098bb1
BLAKE2b-256 04641c1155287d67732adb6752401afc3d5cb542d593150249d14c11364074fc

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7aba3d121c89688e3d69432c65eec87dbc5bdb8b9926ae8990a98cde26a0b7ef
MD5 effaec728b3be8eb4288e9e3c0419545
BLAKE2b-256 616d3dbc8307e94d5f52170ca1ffa2e5e371f5b88dd695abb3b1f032d9cc44bc

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c3fcfb839379b05176061f0532f2c358c6717e52d024d0f6624372d002ef3ad3
MD5 ac5e03068a2e7cd0ec3eca7cc9a52892
BLAKE2b-256 e7045d062601ecb1f17b488516a0760614c0461305b4dadd143d318c3179f26c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ab6c862cba32121fd0b3f629f70dee0506050cda531bf61d8570dbfa4f84ce5
MD5 7f2862ca4a949e6688c5832766e201d8
BLAKE2b-256 42cdb42d57d4d03e07b15487afb461a17c6ae4179f4cfac6dffbfa16389cc06c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 46b8ea2733c1fa6522da4cc0912e3ddd9b10d9482c6a7aaace3930ca27f48291
MD5 345aefb08e1e32f0c32ac1c6550fc11b
BLAKE2b-256 abc5027dd70eb2dd4414f4ce858c199300c8a7df8e0e2eae0c0bdd10b388a17b

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9f7b7010343f0875911cefdaf4681b62936af3a48012202944c3b6409a667c72
MD5 8b4f231aa9373ef18a0f9b1918476c45
BLAKE2b-256 61e8ee84b5f45140d2a430b83f8e2f274328bfd79362f948de15a00d2acdd1f4

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3e5514afe2064096497e2eccc89bf22d7ed63ce23c11be851c72ae57c1484071
MD5 6da621f3ef69d93adc7ac5c416afd2da
BLAKE2b-256 f6be22754cf800b720ba149196081518c0eee3b55dc515d5e54eb9f5369bb9d7

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 da49bed56c41e712d44a9cca66bdf39f38c68ab741a8033986d9c4357cebcd8f
MD5 bf261d0da9766f280d824fb51d4f965c
BLAKE2b-256 c501a6d351ffe767e9ab8f356767654cd9cdfb719b6dd4c2a61d94b4512360dc

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1e73a3885308dad2d6d863aa3fdeeed36554d25f445a76d34c18d4ae61fbf66
MD5 0abcdc6a31054f59ee5f5cb972b1ad9d
BLAKE2b-256 e2a6d154339381497a84246d6b2fb4b6ef324b55f242b3ae5ce7edd66cce65a7

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb2e42753f51cf8f107582930040f6e3c3337b7fb89b91a164ab0ff525893140
MD5 91b7cca3b94261e3d0c5e7e30b98ab42
BLAKE2b-256 2f7c344dacf1ba6aaefe7274e8b8a6743496d026d3d5cb2b3977d9edd27708db

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d19a127c1c118e33a76879d210af1039f0a707e01ff83bb8ecadd817e3570fb4
MD5 f55b2c927cf36fbdf265195a3d4ba865
BLAKE2b-256 5b7731a5e898987c80bda6c0b158758b9397fc018f5738077133ed1d97d5cdcf

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b3b36262a7f8cb45788ee08e0cb0e6df9c8599ebcf469f4c4f9fbdbb37f0f11a
MD5 9c577a11859419db44848429a514a32e
BLAKE2b-256 1b02b394f65b1787bf85790783293803a0325312ec571c5a1e4727cd71bf7724

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e4ef9a480f301db5c5f35f99aec4bb1cd326880ff36fe777849ca7a61b2ac1c7
MD5 afd8a3465e5db89ef0dcf7385ef6c04a
BLAKE2b-256 ad69e22b0867933529f25586f08744149cafa999468d2cd3491cafc76c1a3f1b

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6f510e28996569028cd582b5b59a2a638a417d682d4c07f2d4b6862b4e91c324
MD5 75806e71003e3f1ab6cd6bd10887e3fb
BLAKE2b-256 c3a5d88fc4d2eb73b5a94971ee4c83e7be6c78061341423edfa392a06cc7e1d5

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00d6f9d53ca362d6f656a8da33e4dd73fc9268196bfd8f176a4278332270784c
MD5 3f8af47a4e2142247699d2001f5e62b9
BLAKE2b-256 8d6b6c22d34223da480b4c1374f3ff606c5f1ecad2dec0d08ec954f0d9c21d46

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5f1b3d0ba4daeeb0453d2f1c26f9bb3cd07df032c7c8f0f1925be01024e28c91
MD5 807e33efd26e3edbaf924aef3fdcb67c
BLAKE2b-256 e4114a346b0e0ec19580ff7b63c0fea9caba71d121d9b6080daf3b83b38de438

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a9bbac94f26efd220100402c90c0cf93286aecee4b2d913e4c85aa8661b4770a
MD5 598f6c8d2bc304685009efcf638129a9
BLAKE2b-256 e59bbda413252dbd40d26ad1a849210d39118743f86836b8a6160d926905437f

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 571beddd82a019a3c722cd7b03c2914b4d5bf843d5a3d27cebf85d9270ec4df6
MD5 56f71538fe0d677fbd4a86df33c77a96
BLAKE2b-256 fea6758f5b27659626360bb9af66f1885bb3b68f155451a062d1ab585d4f8f88

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 57963622a7299b0a1288c3fee09349ea2c7e9d228c8ef7a8663c5699e39ddfd2
MD5 9901a72657756b04bf5697dcdd56aee1
BLAKE2b-256 b036a64e6d9054dd95310b9d8228779fd700224a8d23728ee4006bb4c200028d

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 794750eae2f549126cdef7311693a5c69742d01f040c1bafafb34e3bdc71bd49
MD5 0efd2454ff7673ef06695da07b8aa1dc
BLAKE2b-256 2647a945cf230511f934482189a37a18e4174c9216931a645b4617defe88bf6a

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39ee52d216edce53f04262386753537d7377d43291f754f2e911abd213808591
MD5 d2c10ebd5d3516b1cb61c2ba7995695c
BLAKE2b-256 6227f7ac709e2e3b73ab754ed2e0f12e2c5da0713215ae58faec371609f31f5c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ef09e3725c3f7425a866e122782b4fdb166e0d1440973277af3d38978c4553c6
MD5 d8c651a6120c638d67c6e7d02a296e99
BLAKE2b-256 246b8733b291295ce22b9b8ae18832f94ca1d2ce8c447ff8e370cde59ffaa901

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4de8f726a2cfb41fd66cc3e94c48b3a7537132484fd1c9669e4bde65008ee7e9
MD5 70a90e022eb58af72ffbfaa55b37ca98
BLAKE2b-256 9fa6e40ce894bfaf9cfe072739eaba1e8e8994ffa9650e1fadc5c96b4c4e19a3

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c6b7ed6fb750426580481a42507587b5b60d0dc171ff972cc5b0bdd8dcf4c320
MD5 77a251d131da67501728be4fec6ba3e5
BLAKE2b-256 0b7a7bc69286247b3f8337162927036c6768d1c1f2f380e37df3287d11e9d5bf

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 54b6dd9aacf511bb520e8d5459562de7ae6147e10002044ff9a4c82cfd037c94
MD5 772b6127e425e0d7b1ed9c4f0595d715
BLAKE2b-256 85c2352e02b313936987e4d42ab6a25a713922157ce48a6b593919042ab96e73

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 04026661cabdaef90793cac814664f5188c7b45bd110c2e0b4ac7eb8de9823b5
MD5 d059fba229ca0183e942bf9d5ca8b4cc
BLAKE2b-256 3c6c342fa647c90dfa6be798e82ec5eacc08ff276d846892ecd831a5f5e7aae8

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 064023a104a2616c2b7adf9a85b0c55784684e2257baeaa907ba7595b43d1567
MD5 12a51fa6733d783e55a35bc13ff1f6f8
BLAKE2b-256 2ee40911c8f3bb852a2fa58735d4858f91eac7631cbceeb38e6915bffda7cc7f

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0125fff0cfe504c0dc4d5e054e32f28ed201676c544ca0d6f538739295b7af69
MD5 b2952321367d8f90cf2ac9586805c80c
BLAKE2b-256 8e65225652a3288ef91c2b3f7e72f054a7f08b952f61af677613695902f9de87

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 241f3c0cb53aa8a7e89b86f67e1688025911f59b77d4965c24fd3297231bff16
MD5 25323843c3d7417730cb3d571b1c28b5
BLAKE2b-256 7de77c8e807d1263ef4c5d2dc074f1985b0014f2b687702ff5ee4167e14f7d35

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d25df8df4e48f8428c89d1fe4efed0775b61bf17b859ce7e13891eb43f9f337
MD5 b253c1f621f07b7c7f325c6b94da47b3
BLAKE2b-256 3bfd05d14cf35651bee15e85b46f1514a7cdb27fdcedf17572286358c1c386bd

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 13d5d63859d68b2145de7c450a14e86418991afce0f12a0377d0e19d78e2aa23
MD5 f074f71a83d333121f4548d52a03d0d2
BLAKE2b-256 6ad1dc6dac1e07119fe744113fbce276e7d483c9cf3576b111d44f3d52aa0110

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.22-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.22-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 044f512bdf9268ae3b92c130bc101a001d78789a3877ab8dad356ee0524b964f
MD5 0fbc4a35f955a697f946955c575dab84
BLAKE2b-256 c495014377a9a8b13836d0a659aca32948d9b6f73ab9ed3f0f133bcbb77b5afa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page