Deep Recursive Embedding for High-Dimensional Data
Project description
# Deep Recursive Embedding
Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
DRE-1.0.1.tar.gz
(54.1 kB
view hashes)