DTCO Utility
Project description
Preliminary
Liberty Metric Extraction
Grid RO Compiler
Copernic System
Generated Model for Virtual Silicon
WAT Analysis
CP Analysis
Design & Technology C-optimization
Process Uniformity & OCV Analysis
Machine-learning Framework
Binning Strategy
Installation
pip install DTCO
Liberty Metric Package
from libMetric import liberty as lutil
import numpy as np
Liberty conversion
# load & convert CCS to JSON
lnode = lutil.read_lib('ccs.lib')
lutil.dump_json(lnode,out='ccs.json')
lnode.keys()
# load liberty from JSON
lnode = lutil.load_json('ccs.json')
lnode.keys()
Timing & power operation
# list cells in the liberary
[v for v in lnode['cell']]
# grab cell node by cell-name, e.g., 'ND2D1LVT'
cnode = lnode['cell']['ND2D1LVT']
# encapsulate all timing/power tables by timing-arc into a dataframe
lutT = lutil.get_cell_timing(cnode,todf=True)
lutP = lutil.get_cell_power(cnode,todf=True)
lutT.index # enumerate all lookup tables encapsulated by timing-arc
lutP.index # enumerate all lookup tables encapsulated by timing-arc
Lookup table, interpolation & regression
# lookup table interpolation, e.g., timing-arc ('A1,ZN,', 'combinational', 'cell_rise')
lut = lutT.loc[('A1,ZN,', 'combinational', 'cell_rise')]
y,x,v = map(np.array,lut.values) # unpack values as numpy array
# timing interpolation based on the specified transition & load
lutil.table_lookup(lut,trans=0.0207,load=0.0010072,dflag=True)
# LS regression & prediction
lutil.lut2lsCoeff(lut.to_dict(),trans=0.03,load=0.0017,dflag=True)
Data visualization API
cnode = lnode['cell']['DFCNQD1LVT']
lutT = lutil.get_cell_timing(cnode,todf=False) # grab all timing tables in JSON
lutil.plot_lut(lutT,keys=[('CP,Q,', 'rising_edge', 'cell_rise'),
('CP,Q,', 'rising_edge', 'cell_fall')],xylabel=('load','trans'))
lutil.plot_lut(lutT,keys=[('CP,D,CDN', 'setup_rising', 'rise_constraint'),
('CP,D,CDN', 'hold_rising', 'rise_constraint')],xylabel=('clock','data'))
GRO Compiler Package
from GRO import ROCompiler
import sys
if __name__ == '__main__':
argv = sys.argv
else: # test mode
argv = ['.',
'-config','config_demo.f',
'-outPath','RO_demo',
'-target','TT']
# init GRO instance
gro = ROCompiler()
# parse command line
code,pdata = gro.parseArguments(argv)
# update pdata from config
if pdata.get('configFile')!=None:
cfg = gro.loadConfig(pdata['configFile'])
if pdata.get('initProj')==True: # create RO project directory
gro.initProjectDirectory()
gro.initMakefile()
if pdata.get('initLib')==True:
gro.initLibJSON() # build library JSON DB
if pdata.get('buildRO')==True: # generate RO design and the successive DC, synthesis, vsim, SPICE environments
gro.commitConfig() # start from liberty JSON without initLibJSON
gro.compileGRO()
if pdata.get('lpe')!=None:
gro.genSPICESim()
DTCO Platform
from copernic import dtco
# load the pre-trained model and generate 300 virtual silicon wafers
dt = genFakeData('/content/gmodel_C10.pkl',num=300).set_index(['WID'])
# CP data
dtco.batchFeature(dt,feature='SIDD',num=10,ncol=5,dtype='2d')
dtco.batchFeature(dt,feature='ROu',num=10,ncol=5,dtype='2d')
# WAT data
dtco.batchFeature(dt,feature='VTS_ULVT_N',num=10,ncol=5,dtype='3d')
dtco.batchFeature(dt,feature='VTS_ULVT_P',num=10,ncol=5,dtype='3d')
# # batch visualization on web UI
dtco.batchFeaturePlotly(dt,feature='SIDD',widL=range(1,9),ncol=4)
# all wafer scatter, 200 sub samples steps
dtco.featureScatter(dt.iloc[::200],wid=None,fx='ROu',fy='SIDD',s=2,alpha=0.1)
# single wafer scatter and die XY location on the feature surface
dtco.featureScatter(dt,wid=1,fx='ROu',fy='SIDD',s=10,alpha=0.5)
# feature surface
dtco.featureSurface(dt,wid=1,feature='SIDD',sigma=2.5)
# visualization on web UI
dtco.featureSurfacePlotly(dt,wid=1,feature='SIDD',sigma=2.5)
Productivity Enhancement
dw = dtco.waferSort(dt,itemL=['ROu','SIDD'],nsize=300)
# PCM density 3D
binx,biny,H = dtco.pcmDensity3D(dt,fx='ROu',fy='SIDD',sigma=2.5)
# PCM density 2D
binx,biny,H = dtco.pcmDensity2D(dt,fx='ROu',fy='SIDD',sigma=2.5)
# yield assessment
dtco.pcmDensity(dt,fx='ROu',fy='SIDD',sigma=2.5,percentiles=[1,5,10,20,30])
# 2D binning evaluation, boundary and bin yield
hbin = dtco.pcmBinning(dt,fx='ROu',fy='SIDD',sigma=2.5,bins=(4,6))
# compromise design recipe/strategy and yield assessment
dtco.pcmYieldAssessment(dt,fx='ROu',fy='SIDD',percentiles=[10,20,30],sigma=2.5)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file DTCO-0.1.4.tar.gz.
File metadata
- Download URL: DTCO-0.1.4.tar.gz
- Upload date:
- Size: 40.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6d7eff37833e8d8e4b156a4313a3667e36c255fa9524156114fb38782aa494da
|
|
| MD5 |
4cc82b1c2d225525e41a126873027d91
|
|
| BLAKE2b-256 |
de432fea04a751d3d57a10ce0d80bdc0627439b3174860f86408daa5e54217a1
|
File details
Details for the file DTCO-0.1.4-py3-none-any.whl.
File metadata
- Download URL: DTCO-0.1.4-py3-none-any.whl
- Upload date:
- Size: 41.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
05971a08266be459946e61f1b58b2e0cdff73e670382fd31ca8f78ea718d9659
|
|
| MD5 |
c187c3f9f6fa8fd807715e198de26547
|
|
| BLAKE2b-256 |
89afc71ba887d2f69749b9151999a9341519bc4641b83bd126c5f52f89d0f950
|