Skip to main content

DTP emulator

Project description

Quickly Start

For pypi

We have package our repository into DTP_Emulator, which means that you can run order

pip install DTP-Emulator

to install it.

There may be some differences between this and below. But you can finished according to the next steps :

  • create your module
from simple_emulator import PacketSelection, CongestionControl


# Your solution should include packet selection and congestion control.
# So, we recommend you to achieve it by inherit the objects we provided and overwritten necessary method.
class Solution(PacketSelection, CongestionControl):
    pass
  • create emulator
from simple_emulator import Emulator


# Use the object you created above
my_solution = Solution()
emulator = Emulator(solution=my_solution)
  • run emualtor
# You can specify the time for the emualtor's running.
# It will run until there is no packet can sent by default. 
emulator.run_for_dur()

Here is an complete demo about the using of pypi.

For this repository

For players, you need to finish the code both of "congestion_control_algorithm.py" and "block_selection.py" files in path of "/player".

Here we provide you some congestion control algorithm. By default the congestion control is "reno" and block selection algorithm is selecting block which is closest to it's deadline.

Then, just run the order "python3 main.py".

You will get some output in the path "/output/" and should fix your code according to the output.

Here is an complete demo about the using of this repository.

For Detail

player

Here are the 3 methods that players need to finished.

aitrans_solution.py

It should be implemented with these method :

In case you forget, we recommend you implement by inheriting the objects from Solution in packet_selection.py and Solution in congestion_control_algorithm.py and overwrite these methods.

Here is the explanations of Input and Output .

packet_selection.py

In this module, you have to implement the function "select_packet" with the parameters "cur_time, packet_queue" and return an integer value which means the packet index in packet queue, which will be sent at the time "cur_time".

Here we provided a example of selecting packet by the create time firstly, and radio of rest life time to deadline secondly.

select_packet

For every packet in packet queue, it's implement in "objects/packet.py". But we recommend you to get more information at Packet .

congestion_control_algorithm.py

In this module, you have to implement a class with member function "make_decision" and "append_input". So we recommend you to accomplish this by inheriting from the object of "CongestionControl" implemented in "cc_base.py" in case you forget these.

Here we provided some simple algorithms about congestion control to help you being familiar with this competition. Like Reno and an example about reinforcement learning implemented by tensorflow.

make_decision

For the member function "make_decision", we will call it every time I want to send a packet. And it should return a dictionary with window size and send rate according to the information from "_input_list", just like below.

{
    "cwnd" : 10,
    "send_rate" : 10
}

append_input

For every item information in "_input_list", it is a triad of (event_time, event_type, and packet_information_dict).

  • event_time

    The time when the packet arrived.

  • event_type

    We divide the packet into three categories : PACKET_TYPE_FINISHED, PACKET_TYPE_TEMP, PACKET_TYPE_DROP.

    PACKET_TYPE_FINISHED : The acknowledge packet that successfully reached the source point;

    PACKET_TYPE_TEMP : The packet that have not yet reached the source point;

    PACKET_TYPE_DROP : The packet used to inform the source point of packet loss.

  • packet_information_dict

    The packet it the object implemented in "objects/packet.py". But we recommend you to get more information at Packet .

Why we design a individual function to add element to "_input_list"?

It's because there are some congestion control algorithm that need to update window size and send rate immediately. So you need to return a dictionary with window size and send rate if you want to do some changes as soon as the data is received , like here.

The calculation of score

We use this QOE function to calculate score of your solution : $$ QOE = \sum_{block \in Blocks} \alphapriority + \betaMiss_ddl $$ And here is parameters' explanation.

config

constant

Here are some constants that may be help for you:

  • USE_CWND

    Set "False" if your congestion control algorithm don't use cwnd.

  • ENABLE_LOG

    Set "False" if you don't want to generate packet log in path "output/packet_log".

  • MAX_PACKET_LOG_ROWS

    The number of rows for a single packet log. If you just want to use one file to log, set it "None".

All of these constants can be set on the create of emulator by the key words arguments.

Block data

We create the block by using the file "data_audio.csv" and "data_video.csv" which are record from WebRTC.

For "data_audio.csv", the first columns is the created time of block and the second columns is the block size.

时间 (s) 数据大小 (B)
0.0 514
0.06 305
... ...

For "data_video.csv", it has the same columns like "data_audio.csv" except the third columns, which means P frame or I frame.

时间 (s) 数据大小 (B) 关键帧
0.0 9584 P
0.033 8069 P
... ... ...

Trace data

We use the generated trace data by using the Hidden Markov algorithm to simulate the bandwidth changing of the network, which is implemented in "scripts/network.py".

For the trace file, the first columns is the changed time of bandwidth. The second columns is the bandwidth whose unit is megabytes. And the third columns is the link random loss rate. Finally, the last columns is the fixed propagation delay of link whose unit is seconds.

时间 (s) 带宽 (MB) 丢包率 传播时延 (s)
0 19.38592070201254 0 0.001
1 24.832955411664393 0 0.001
... ... ... ...

objects

Here are all the objects that our system uses. You can get more details from our powerpoint presentation.

What I want to emphasize here is that, your congestion control module, which implemented in "player/congestion_control_algorithm.py", should inherit from the object of "CongestionControl" implemented in "cc_base.py".

We've provided some examples of classic congestion control algorithms in path "player/examples", like Reno.

output

packet log

We will output all the packet log into the directory. Here you can get one packet all life time.

Because of there may be so many packet information that logging file is big. So we split all information into different files if its rows exceed MAX_PACKET_LOG_ROWS which you can reset in "config/constant.py".

For every row, it's form like below:

{
    "Time": 0.0, 
    "Waiting_for_ack_nums": 0, 
    "Sender_id": 1, 
    "Type": "S", 
    "Position": 0, 
    "Send_delay": 0.0, 
    "Pacing_delay": 0.0, 
    "Latency": 0.0, 
    "Drop": 0, 
    "Packet_id": 1, 
    "Create_time": 0.0, 
    "Offset": 0, 
    "Payload": 1480, 
    "Packet_size": 1500, 
    "Extra": {
        "Cwnd": 1
    }, 
    "Block_info": {
        "Block_id": 1, 
        "Priority": "0", 
        "Deadline": 0.2, 
        "Create_time": 0.0, 
        "Size": 200000.0
    }
}

Here is every key's explanation:

  • Time : The time handle this event;
  • Waiting_for_ack_nums : The numbers of packets that sended but not acknowledged by source.
  • Sender_id : The sender's id that sent this packet;
  • Type : To distinguish sending or acknowledge packet;
  • Position : The position that packet on. It's 0 if packet on source'
  • Send_delay : The time that packet sent into window;
  • Pacing_delay : The time that packet send into network. It's used in the congestion control like BBR.
  • Latency : The time that packet spending on links including queue delay and propagation delay;
  • Drop : Label whether the packet is dropped;
  • Packet_id : The Identity of packet;
  • Create_time : The time when the packet is created;
  • Offset : The offset of the packet in its block;
  • Payload : The size of valid data in packet whose unit is bytes;
  • Packet_size : The size of the packet whose unit is bytes;
  • Extra : The filed we provided for your congestion control. We will fill it when system need to send packet (equals to calling "make_decision" method in your solution).
    • Cwnd : The size of crowded window at sender.Its unit is packet;
  • Block_info : The block information that the packet belong to. You can get more from below.

block log

Here is all of the blocks that the system sent.

For every row, it's form like below:

{
    "Block_id": 4, 
    "Priority": "0", 
    "Deadline": 0.2, 
    "Create_time": 3.0, 
    "Size": 200000.0, 
    "Send_delay": 0.0, 
    "Latency": 1.4900000000000104, 
    "Finish_timestamp": 3.0425, 
    "Miss_ddl": 0, 
    "Split_nums": 136, 
    "Finished_bytes": 200000.0
}

Here is every key's explanation:

  • Priority : The degree of emergency of block;
  • Block_id : The identity of block;
  • Size : The size of block whose unit is bytes;
  • Deadline : The block's failure time size;
  • Create_time : The time when block is created;
  • Send_delay : The sum of all packets's "send_delay" which belong to the block;
  • Latency : The sum of all packets's "latency" which belong to the block;
  • Finish_timestamp : The time when block is finished if it don't miss deadine; Otherwise, it's the time when the block was detected failure;
  • Miss_ddl : Whether the block is miss deadline;
  • Split_nums : The count of packets that the block is divided;
  • Finished_bytes : The number of bytes received by the receiver.

cwnd_changing.png

Here we provided a simple schematic diagram of window change process according to partial packet log.

The horizontal axis is the time(seconds), the left vertical axis is the number of packets, and the right vertical axis is the bandwidth (unit is packet).So solid lines represent window changes and dashed lines represent bandwidth changes.

We put the draw function in the "plot_cwnd" of "utils.py". You can specify the value of "raws" to set the amount of data to be processed, specify the value of "time_range" to set the the time interval you want see, and specify the value of "scatter" to use a line chart or scatter chart.

cwnd_changing

emulator-analysis.png

Here we provided a simple schematic diagram of latency of packets change process according to partial packet log.

The horizontal axis is the time(seconds), the left vertical axis is the latency of packets. So solid lines represent latency changes. And the cross indicates that the packet was lost at this time.

We put the draw function in the "analyze_emulator" of "utils.py". You also can describe these parameters mentioned above and do some customization, like "rows", "time_range" and "scatter".

emulator-analysis

throughput_changing.png

throughput_changing

Todo list

  • [x] Add BBR congestion control module.
  • [x] Add AI congestion control module.
  • [x] Add QOE mudule.
  • [x] Add system presentation PPT.

Appendix

Input

变量名 含义 样例
cur_time 当前时间(s) 0.0(s)
packet_queue 发送端当前待发送的包队列,其每个包的字段信息见表packet_queue [packet_1, packet_2]
data 由接收端传回的ACK或Lost信息,其每个包的字段信息见表data [event_time, event_type, packet_information_dict]

Output

变量名 含义 样例
packet_index 当前时刻要发送的包在packet_queue中的索引值 1(int)
Cwnd 发送端当前时刻的拥塞窗口大小 10(packet)
Send_rate 发送端当前时刻的发送速率大小 5(packet/s)

Table : packet_queue

变量名 含义 样例
packet_type 包类型,分'S'和'A'两种,分别表示发送过程和确认过程 A(str)
create_time 该包的创建时间 0.1(s)
offset 该包在其所属Block中的偏移 1(int)
packet_id 该包的ID,全局唯一 1(int)
payload 该包实际有效的Block数据大小(Bytes) 1480(Bytes)
packet_size 该包实际大小(Bytes) 1500(Bytes)
block_info 该包所属Block的信息,类型为dict,其所含字段信息见表block_info 0.0(s)

Table : block_info

变量名 含义 样例
Block_id Block的ID,全局唯一 1(int)
Priority Block的优先级,取值0、1和2 1(int)
Deadline Block的过期时间大小 0.2(s)
Create_time Block的创建时刻 0.1(s)
Size Block的大小(Bytes) 200000(Bytes)

Table : data

变量名 含义 样例
event_time 当前时间(s) 0.1(s)
event_type 该包的事件类型,取值可为F、D和T,分别表示完成包、丢弃包和中间状态包(即除前2种外的包) F(str)
packet_information_dict 该包的简要信息组成的字典,其每个包的字段信息见表packet_information_dict

Table : packet_information_dict

变量名 含义 样例
Type 包类型,分'S'和'A'两种,分别表示发送过程和确认过程 S(str)
Position 该包所处位置,当其在发送端时为0 0(int)
Send_delay 发送时延 0.1(s)
Pacing_delay Pacing时延,如BBR之类的拥塞算法会使用到的概念 0.0(s)
Latency 该包在链路中所花费的时延,包括所有已经过的跳的排队时延和链路的传播时延 0.2(s)
Drop 该包是否是一个表示丢弃信息的包 0(int)
Packet_id 该包的ID,全局唯一 100(int)
Create_time 该包的创建时间 0.0(s)
Offset 该包在其所属Block中的偏移 0(int)
Payload 该包实际有效的Block数据大小(Bytes) 1480(Byte)
Packet_size 该包实际大小(Bytes) 1500(Byte)
Block_info 该包所属Block的信息,类型为dict,其所含字段信息见表block_info
Extra 额外信息,这个字段提供给选手可以添加自定义的信息,每次发包的时候会调用选手模块中的“make_decision”函数,获取其所返回的最新Extra字段信息,填充到该包中,其可能包含字段信息见表Extra

Table : Extra

变量名 含义 样例
Cwnd 发送端当前时刻的拥塞窗口大小,单位为包,当且仅当使用拥塞窗口时才有效 5 (packet)
Send_rate 发送端当前时刻的发送速率大小,单位为包/s,当前仅当选手使用rate-based拥塞算法有效 10 (packet/s)
inflight 当前时刻发送端已发送但未收到ack或lost信息的包的数量 10 (packet)

Table : QOE_parameters

指标 含义 样例
Priority block的优先级,取值0、1和2 0 (int)
Miss_ddl block是否miss deadline 1 (int)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for DTP-Emulator, version 1.6
Filename, size File type Python version Upload date Hashes
Filename, size DTP_Emulator-1.6-py3-none-any.whl (39.2 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size DTP_Emulator-1.6.tar.gz (31.1 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page