Skip to main content

Package to help with normalizing data needed for the platform!

Project description

General Information

The DataNormalizer package is made to help data scientists with validating and normalising data that they are going to import. Right now the library is able to validate columns and check datasets based on a set of rules like custom data types.

import DataNormalizer

Setting variables

The DataNormalizer library might need the details of the target app. These setting are set through properties.

Clappform.Auth(baseURL="https://dev.clappform.com/", username="user@email.com", password="password")
Normalise = DataNormalizer.Normalise()
Normalise.app_data = Clappform.App("appname").ReadOne(extended=True)
Normalise.dataframe = pandas.read_excel("../data.xlsx")
Normalise.rules = json.load(open('../rules.json'))

checkRules

Function that will check the custom rules against your dataframe. Requires dataframe and rules. Returns a dataframe

Normalise = DataNormalizer.Normalise()
Normalise.dataframe = pandas.read_excel("../data.xlsx")
Normalise.rules = json.load(open('../rules.json'))
result = Normalise.checkRules()

Rules are added in a JSON file. Every column has its own rule, however rules without a column name are seen as global rules.

[
{
    "reset_coverage":"True",
    "action": "np.nan",
    "verbose": "to_file"
},
{ 
    "column": "city",
    "check_coverage": "10",
    "selection": [ "Aa en Hunze", "Aalsmeer", "Aalten", "Achtkarspelen"]
},
{
    "column": "postalCode",
    "type": "postal_code"
}
]

Supported keys are

keys value explanation Scope
verbose to_file / silent... How do you want to be notified of errors? Column / Global
column gemeente On which column does this rule apply Column
type postal_code / int / string... What should the values of this column be Column
action np-nan What to do with the value if incorrect Column / Global
selection [ "Aa en Hunze", "Aalsmeer", "Aalten"] The values must be one of these values Column
one_hot_encoding "prefix" or "" with no prefix Concat pandas dummies on the dataframe Column
normalise ["remove_special"] or ["remove_special", "capitalize"] Apply one or more normalisation rules Column
normalise_columns ["remove_special"] or ["remove_special", "capitalize"] Apply one or more normalisation rules on all columns (global rule) or on a single column Column / Global
concat {"name": "uniqueID", "columns": ["col1", "col2"]} Concatenate columns together (for unique ID generation) Global
operator {"name": "divide", "columns": ["A", "B"], "type": "divide"} Apply operator on two columns, result to new column Global
drop_duplicates ["col1", "col2"] Drop duplicates based on a subset of column values Global
shared_colname_drop "anything" If multiple shared column names, keep one Global
timestamp "%Y-%m-%d" Map values to a datetime object, skip rule immediatly if one value fails Column
range_time ["2017-12-01 00:00:00", "2012-12-01 00:00:00"] Converts data to timestamp and checks range, combining with timestamp improves speed Column
fillna value Fill every NaN value to a key Column / Global
range ["-inf", 2010] / [2010, "inf"] Number range, left <= value >= right Column
mapping {"bad": "0","moderate": "1"} Map row values to something else Column / Global
column_mapping {"postcode": "postal_code","stad": "city"} Map column values to something else Column / Global
regex [1-9][0-9]?$^100$ Column value should look like this regex Column
check_coverage 50 Take a smaller sample of the column, in percentage Column / Global
reset_coverage True / False If an error is found in the sample, fall back to 100% Column / Global

Supported values for types

type explanation
int accepts ints and floats get decimal removed
positive-int same as int but only positive and zero
negative-int same as int but only negative
string characters accepted
float decimal numbers accepted
boolean makes lowercase and accepts true / false
postal_code Removes special chars, accepts 1111ab and 1111AB
street Accepts letters, spaces and '. Makes first character and characters after ' uppercase
latitude / longitude accepts 32.111111 format
letters only accepts letters

Normalise options for column and rows

value explanation
capitalize Make first character uppercase
lowercase Make whole string lowercase
uppercase Make whole string uppercase
remove_special Remove special characters
remove_whitespace Remove whitespaces
spaces_to_underscore Make every space an underscore _
spaces_to_hyphen Make every space a hyphen -

Operator options

operator explanation
divide Divide two columns on row level and put result to new column
multiply Multiply two columns on row level and put result to new column

Fillna options

action explanation value
fillna Fill NaN value with something else Some thing to fill NaN with
fillna_diffcol Fill NaN with the value of a different column on that row Other column name
fillna_mean Fill NaN with mean of column Doesn't matter
fillna_median Fill NaN with median of column Doesn't matter

Supported values for action

action explanation
np.nan Replaces mismatches with np.nan
drop Drop the row

Supported values for verbose

action explanation
to_console (DEFAULT) Print errors to console
to_file Print errors to a file with a timestamp.txt format
silent Dont print

obtainKeys

Function that will find keys needed for the app, needs app_data. Returns keys

Validate = DataNormalizer.Validate()
Validate.app_data = Clappform.App("appname").ReadOne(extended=True)
Validate.obtainKeys()

matchKeys

Function that will find missing keys, needs app_data and dataframe. Returns missing and additional keys

Validate = DataNormalizer.Validate()
Validate.app_data = Clappform.App("appname").ReadOne(extended=True)
Validate.dataframe = pandas.read_excel("../data.xlsx")
Validate.matchKeys()

fixMismatch

Function that will suggest changes to your dataset based on missing keys, needs app_data and dataframe. Lowering the strictness will increase the amount of matches with possible keys. Needs app_data and dataframe. Interaction via terminal.

Validate = DataNormalizer.Validate()
Validate.app_data = Clappform.App("appname").ReadOne(extended=True)
Validate.dataframe = pandas.read_excel("../data.xlsx")
Validate.fixMismatch(strictness = 0.8)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DataNormalizer-1.3.4.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

DataNormalizer-1.3.4-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file DataNormalizer-1.3.4.tar.gz.

File metadata

  • Download URL: DataNormalizer-1.3.4.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for DataNormalizer-1.3.4.tar.gz
Algorithm Hash digest
SHA256 58fae1c90b513fe6818c038e092a15b2fd094dbcd6d926d21e86d41ab333453d
MD5 7a590ad59ba04183c1406798f6211b46
BLAKE2b-256 ea378c2bd71f80b78c53df52006aec6cf1aba39405717e9767db2c23d14979c0

See more details on using hashes here.

File details

Details for the file DataNormalizer-1.3.4-py3-none-any.whl.

File metadata

File hashes

Hashes for DataNormalizer-1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 577aa6fbada7db8918a1ee987b6478f4d6c0645792ccfdcb2363b58f6ff28c64
MD5 b04b254051c4d93986b0e3f3b9fd6be2
BLAKE2b-256 29417274491cfde30ca5302a74330d51cce33813cc05c79968376f4f4f20cff7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page