Skip to main content

Data Quality Framework provides by Jabar Digital Service

Project description

DataSae

Docs License PyPI - Python Version PyPI - Version GitHub Action Coverage

Data Quality Framework provides by Jabar Digital Service

Converter

https://github.com/jabardigitalservice/DataSae/blob/46ef80072b98ca949084b4e1ae50bcf23d07d646/tests/data/config.json#L1-L183

https://github.com/jabardigitalservice/DataSae/blob/46ef80072b98ca949084b4e1ae50bcf23d07d646/tests/data/config.yaml#L1-L120

Local Computer

pip install 'DataSae[converter]'
from datasae.converter import Config

# From JSON
config = Config('DataSae/tests/data/config.json')

# From YAML
config = Config('DataSae/tests/data/config.yaml')

# Local computer file to DataFrame
local = config('test_local')

df = local('path/file_name.csv', sep=',')
df = local('path/file_name.json')
df = local('path/file_name.parquet')
df = local('path/file_name.xlsx', sheet_name='Sheet1')

df = local('path/file_name.csv')  # Default: sep = ','
df = local('path/file_name.json')
df = local('path/file_name.parquet')
df = local('path/file_name.xlsx')  # Default: sheet_name = 'Sheet1'

Google Spreadsheet

https://github.com/jabardigitalservice/DataSae/blob/4308324d066c6627936773ab2d5b990adaa60100/tests/data/creds.json#L1-L12

pip install 'DataSae[converter,gsheet]'
from datasae.converter import Config

# From JSON
config = Config('DataSae/tests/data/config.json')

# From YAML
config = Config('DataSae/tests/data/config.yaml')

# Google Spreadsheet to DataFrame
gsheet = config('test_gsheet')
df = gsheet('Sheet1')
df = gsheet('Sheet1', 'gsheet_id')

S3

pip install 'DataSae[converter,s3]'
from datasae.converter import Config

# From JSON
config = Config('DataSae/tests/data/config.json')

# From YAML
config = Config('DataSae/tests/data/config.yaml')

# S3 object to DataFrame
s3 = config('test_s3')

df = s3('path/file_name.csv', sep=',')
df = s3('path/file_name.json')
df = s3('path/file_name.parquet')
df = s3('path/file_name.xlsx', sheet_name='Sheet1')

df = s3('path/file_name.csv', 'bucket_name')  # Default: sep = ','
df = s3('path/file_name.json', 'bucket_name')
df = s3('path/file_name.parquet', 'bucket_name')
df = s3('path/file_name.xlsx', 'bucket_name')  # Default: sheet_name = 'Sheet1'

SQL

pip install 'DataSae[converter,sql]'

MariaDB or MySQL

from datasae.converter import Config

# From JSON
config = Config('DataSae/tests/data/config.json')

# From YAML
config = Config('DataSae/tests/data/config.yaml')

# MariaDB or MySQL to DataFrame
mariadb_or_mysql = config('test_mariadb_or_mysql')
df = mariadb_or_mysql('select 1 column_name from schema_name.table_name;')
df = mariadb_or_mysql('path/file_name.sql')

PostgreSQL

from datasae.converter import Config

# From JSON
config = Config('DataSae/tests/data/config.json')

# From YAML
config = Config('DataSae/tests/data/config.yaml')

# PostgreSQL to DataFrame
postgresql = config('test_postgresql')
df = postgresql('select 1 column_name from schema_name.table_name;')
df = postgresql('path/file_name.sql')

Checker for Data Quality

from datasae.converter import Config

# From JSON
config = Config('DataSae/tests/data/config.json')

# From YAML
config = Config('DataSae/tests/data/config.yaml')

# Check all data qualities on configuration
config.checker  # dict result

# Check data quality by config name
config('test_local').checker  # list of dict result
config('test_gsheet').checker  # list of dict result
config('test_s3').checker  # list of dict result
config('test_mariadb_or_mysql').checker  # list of dict result
config('test_postgresql').checker  # list of dict result

Example results: https://github.com/jabardigitalservice/DataSae/blob/46ef80072b98ca949084b4e1ae50bcf23d07d646/tests/data/checker.json#L1-L432

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DataSae-0.5.0a0.tar.gz (33.8 kB view details)

Uploaded Source

Built Distribution

DataSae-0.5.0a0-py3-none-any.whl (35.8 kB view details)

Uploaded Python 3

File details

Details for the file DataSae-0.5.0a0.tar.gz.

File metadata

  • Download URL: DataSae-0.5.0a0.tar.gz
  • Upload date:
  • Size: 33.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for DataSae-0.5.0a0.tar.gz
Algorithm Hash digest
SHA256 ad68e29c502a3380b51245983195a989ae70e6e9e8a4f1026bf13367da2eefc6
MD5 ea4446d4dc28c475f84d9f2087cdb467
BLAKE2b-256 fb59a231188c2e87c6a430bf6ad082dac92c8b5cc87b4ea399319e124e631223

See more details on using hashes here.

File details

Details for the file DataSae-0.5.0a0-py3-none-any.whl.

File metadata

  • Download URL: DataSae-0.5.0a0-py3-none-any.whl
  • Upload date:
  • Size: 35.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for DataSae-0.5.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 aaed4c40b0adebb2d1a8a056f659ff1b1e306cba83c5682c80521c7862cf562d
MD5 ee2f62d48b8745de73ba656385af3bdf
BLAKE2b-256 c288516b5d46be106afa2a20129f734f20e59a0d54e977a39ff715fff07e05a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page