Skip to main content

Generate commented YAML input files and markdown documentation from dataclasses.

Project description


title: README author: Jan-Michael Rye

Synopsis

A Python package and command-line utility to automate documentation of Python dataclasses. It can generate the following:

  • Commented YAML input files which can be used as user configuration files.
  • Markdown output for README files which contain the dataclass docstring and commented YAML.

Links

GitLab

Other Repositories

Usage

Command-Line Utility

The package installs the dataclass_documenter which can be used to generate the output from the command-line.

$ dataclass_documenter -h
usage: dataclass_documenter [-h] [-m] [-l LEVEL] dataclass

Generate Markdown or YAML for a dataclass. Note that this will load the module
containing the target dataclass and thus execute any top-level code within
that module.

positional arguments:
  dataclass             The target dataclass, specified as
                        "<module|file>:<class>", e.g. "mypkg.mod1:MyDataclass"
                        or "path/to/src.py:MyDataclass".

options:
  -h, --help            show this help message and exit
  -m, --markdown        Output Markdown documentation instead of just the YAML
                        input file.
  -l LEVEL, --level LEVEL
                        Nesting level of output. For YAML this defines the
                        indentation level. For Markdown this defines the
                        header level.

Python API

The package can also be used directly via its API.

# Import the documenter class.
from dataclass_documenter import Dataclass_Documenter

# Initialize it with a custom dataclass. Here we assume that MyDataclass is a
defined dataclass.
dado = Dataclass_Documenter(MyDataclass)

# Retrieve YAML and/or Markdown text.
yaml_output = dado.get_yaml()
markdown_output = dado.get_markdown()

Example

The following is an example using the dataclasses defined for the unit tests.

Dataclass Definitions

Example dataclasses to show the correpondence between the definition and the generated documentation.

@dataclasses.dataclass
class NestedExampleDataclass:
    """
    Nested dataclass to test recursive documentation.

    Parameters:
        nested_string:
            A string parameter of the nested dataclass.

        nested_number:
            An numerical parameter of the nested dataclass
    """

    nested_string: str = "Another string value."
    nested_number: int | float = 5


@dataclasses.dataclass
class ExampleDataclass:
    """
    Brief description for example dataclass.

    This is a longer description. This dataclass is used for testing and
    generating an example in the README.

    Parameters:
        string:
            A string parameter.

        nested_dataclass:
            A nested dataclass that encapsulates its own parameters.

        integer:
            An integer parameter.

        floats:
            A list of floats.

        opt_string:
            An optional string that may be None.
    """

    string: str
    nested_dataclass: NestedExampleDataclass
    integer: int = 7
    floats: list[float] = dataclasses.field(default_factory=list)
    opt_string: Optional[str] = None
    undocumented_string: str = "Intentionally undocumented string."

Markdown Output

The following is the Markdowna and YAML output automatically generated from the example dataclasses.

ExampleDataclass

Brief description for example dataclass.

This is a longer description. This dataclass is used for testing and generating an example in the README.

Input
# ExampleDataclass

# A string parameter.
# Type: str [REQUIRED]
string: ...

# A nested dataclass that encapsulates its own parameters.
nested_dataclass:
  # A string parameter of the nested dataclass.
  # Type: str [OPTIONAL]
  nested_string: Another string value.

  # An numerical parameter of the nested dataclass
  # Type: UnionType[int, float] [OPTIONAL]
  nested_number: 5

# An integer parameter.
# Type: int [OPTIONAL]
integer: 7

# A list of floats.
# Type: list[float] [OPTIONAL]
floats: []

# An optional string that may be None.
# Type: str [OPTIONAL]
opt_string: null

# Undocumented.
# Type: str [OPTIONAL]
undocumented_string: Intentionally undocumented string.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataclass_documenter-2024.4.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

dataclass_documenter-2024.4-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file dataclass_documenter-2024.4.tar.gz.

File metadata

  • Download URL: dataclass_documenter-2024.4.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for dataclass_documenter-2024.4.tar.gz
Algorithm Hash digest
SHA256 319ab859da297730ea44a9caa0c2af1022703ef4dd32454a7be991b33ced5f8e
MD5 52b73496872d4b73eae41aebf228d3db
BLAKE2b-256 50e23b5007b7131ccc74bde2fc372d1fa8811ea710be51f5c19ff526d092aa48

See more details on using hashes here.

File details

Details for the file dataclass_documenter-2024.4-py3-none-any.whl.

File metadata

File hashes

Hashes for dataclass_documenter-2024.4-py3-none-any.whl
Algorithm Hash digest
SHA256 5a9bde53c78dcd5f1f4914a867e4c38f9d22cef0214eb1b5632a886d1340ab55
MD5 40f730f2b02ecc5de782acca6ca7af62
BLAKE2b-256 8d6a663d253f41b60e2d363c569afbcf66ab812d624316e89ab143cbcd6b27d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page