Skip to main content

Generate commented YAML input files and markdown documentation from dataclasses.

Project description


title: README author: Jan-Michael Rye

Synopsis

A Python package and command-line utility to automate documentation of Python dataclasses. It can generate the following:

  • Commented YAML input files which can be used as user configuration files.
  • Markdown output for README files which contain the dataclass docstring and commented YAML.

Links

GitLab

Other Repositories

Usage

Command-Line Utility

The package installs the dataclass_documenter which can be used to generate the output from the command-line.

$ dataclass_documenter -h
usage: dataclass_documenter [-h] [-m] [-l LEVEL] dataclass

Generate Markdown or YAML for a dataclass. Note that this will load the module
containing the target dataclass and thus execute any top-level code within
that module.

positional arguments:
  dataclass             The target dataclass, specified as
                        "<module|file>:<class>", e.g. "mypkg.mod1:MyDataclass"
                        or "path/to/src.py:MyDataclass".

options:
  -h, --help            show this help message and exit
  -m, --markdown        Output Markdown documentation instead of just the YAML
                        input file.
  -l LEVEL, --level LEVEL
                        Nesting level of output. For YAML this defines the
                        indentation level. For Markdown this defines the
                        header level.

Python API

The package can also be used directly via its API.

# Import the documenter class.
from dataclass_documenter import Dataclass_Documenter

# Initialize it with a custom dataclass. Here we assume that MyDataclass is a
defined dataclass.
dado = Dataclass_Documenter(MyDataclass)

# Retrieve YAML and/or Markdown text.
yaml_output = dado.get_yaml()
markdown_output = dado.get_markdown()

Example

The following is an example using the dataclasses defined for the unit tests.

Dataclass Definitions

Example dataclasses to show the correpondence between the definition and the generated documentation.

@dataclasses.dataclass
class NestedExampleDataclass:
    """
    Nested dataclass to test recursive documentation.

    Parameters:
        nested_string:
            A string parameter of the nested dataclass.

        nested_number:
            An numerical parameter of the nested dataclass
    """

    nested_string: str = "Another string value."
    nested_number: int | float = 5


@dataclasses.dataclass
class ExampleDataclass:
    """
    Brief description for example dataclass.

    This is a longer description. This dataclass is used for testing and
    generating an example in the README.

    Parameters:
        string:
            A string parameter.

        nested_dataclass:
            A nested dataclass that encapsulates its own parameters.

        integer:
            An integer parameter.

        floats:
            A list of floats.

        opt_string:
            An optional string that may be None.
    """

    string: str
    nested_dataclass: NestedExampleDataclass
    integer: int = 7
    floats: list[float] = dataclasses.field(default_factory=list)
    opt_string: Optional[str] = None
    undocumented_string: str = "Intentionally undocumented string."

Markdown Output

The following is the Markdowna and YAML output automatically generated from the example dataclasses.

ExampleDataclass

Brief description for example dataclass.

This is a longer description. This dataclass is used for testing and generating an example in the README.

Input
# Input for ExampleDataclass

# A string parameter.
# Type: str [REQUIRED]
string: ...

# A nested dataclass that encapsulates its own parameters.
nested_dataclass:
  # A string parameter of the nested dataclass.
  # Type: str [OPTIONAL]
  nested_string: Another string value.

  # An numerical parameter of the nested dataclass
  # Type: UnionType[int, float] [OPTIONAL]
  nested_number: 5

# An integer parameter.
# Type: int [OPTIONAL]
integer: 7

# A list of floats.
# Type: list[float] [OPTIONAL]
floats: []

# An optional string that may be None.
# Type: str [OPTIONAL]
opt_string: null

# Undocumented.
# Type: str [OPTIONAL]
undocumented_string: Intentionally undocumented string.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataclass_documenter-2024.2.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

dataclass_documenter-2024.2-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file dataclass_documenter-2024.2.tar.gz.

File metadata

  • Download URL: dataclass_documenter-2024.2.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for dataclass_documenter-2024.2.tar.gz
Algorithm Hash digest
SHA256 66f94619b605b0012dc2a9827adb426fad676d55cca0bcb05ffb58283b6098f1
MD5 8887b401437957c92c7edd304defe30f
BLAKE2b-256 1e1266081d533f81344e4e4684132b7502ccf9c512d511c48a99cc796c0bdab7

See more details on using hashes here.

File details

Details for the file dataclass_documenter-2024.2-py3-none-any.whl.

File metadata

File hashes

Hashes for dataclass_documenter-2024.2-py3-none-any.whl
Algorithm Hash digest
SHA256 708c2727ea3f54c969ac6cf03efbaf84ccd07b9186b13110283de112e877401b
MD5 6d3aac1efda973a785d427f4941d43d5
BLAKE2b-256 c6ee2a1e632d816a2837c4ab83aed88f6d60a0b4f2ec03a9a04a559678e9dafb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page