Skip to main content

python wrapper for DeepCL deep convolutional neural network library for OpenCL

Project description

Python wrapper for DeepCL

Pre-requisites

You must have first installed and activated DeepCL native libraries, see Build.md

To install from pip

pip install --pre --upgrade DeepCL

How to use

See test_deepcl.py for an example of:

  • creating a network, with several layers

  • loading mnist data

  • training the network using a higher-level interface (NetLearner)

The same example, using numpy arrays: test_deepcl_numpy.py

For examples of using lower-level entrypoints, see test_lowlevel.py:

  • creating layers directly

  • running epochs and forward/backprop directly

  • note that you need numpy installed to run this example

For example of using q-learning, see test_qlearning.py.

To install from source

Pre-requisites:

  • on Windows:

  • Python 2.7 or Python 3.4

  • A compiler:

  • on linux:

  • Python 2.7 or Python 3.4

  • g++, supporting c++0x, eg 4.4 or higher

  • have first already built the native libraries, see Build.md

  • have activated the native library installation, ie called dist/bin/activate.sh, or dist/bin/activate.bat

To install:

cd python
python setup.py install

Changes

  • 25 July 2016:

  • added RandomSingleton class, to set the seed for weights initialization

  • added xor.py example

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DeepCL-8.5.2.tar.gz (141.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

DeepCL-8.5.2-py3.4-win-amd64.egg (118.0 kB view details)

Uploaded Egg

DeepCL-8.5.2-py3.4-win32.egg (95.8 kB view details)

Uploaded Egg

DeepCL-8.5.2-py3.4-linux-x86_64.egg (522.5 kB view details)

Uploaded Egg

DeepCL-8.5.2-py3.4-linux-i686.egg (483.4 kB view details)

Uploaded Egg

DeepCL-8.5.2-py2.7-win-amd64.egg (119.3 kB view details)

Uploaded Egg

DeepCL-8.5.2-py2.7-win32.egg (94.4 kB view details)

Uploaded Egg

DeepCL-8.5.2-py2.7-linux-x86_64.egg (482.0 kB view details)

Uploaded Egg

DeepCL-8.5.2-py2.7-linux-i686.egg (452.3 kB view details)

Uploaded Egg

File details

Details for the file DeepCL-8.5.2.tar.gz.

File metadata

  • Download URL: DeepCL-8.5.2.tar.gz
  • Upload date:
  • Size: 141.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for DeepCL-8.5.2.tar.gz
Algorithm Hash digest
SHA256 158ee66cdf7d039ed7d632066d8d1f9131aeb51fbc277eab9cf7eee64dc0053a
MD5 5fc7d58dd39bf94f07b37056c7bf6cd6
BLAKE2b-256 641289aaf5d455eb956cf3d554eebe338b9d1b9f4f3c58e0d9cf08fdba703acf

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py3.4-win-amd64.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py3.4-win-amd64.egg
Algorithm Hash digest
SHA256 b0f4f82fd6f90939dc7706decdfa168eb6ee3ede57cd630be7500090bf98ca69
MD5 3f5e1b670bcc77b5a4978377a6304849
BLAKE2b-256 3b602b0c07dcaf894143ab7347fbed89df23f1fa4e69835f82aa2a37269763f7

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py3.4-win32.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py3.4-win32.egg
Algorithm Hash digest
SHA256 b52df0a9fe2f7ca8761144141de5ae21fcc2c349f1875873208eeebede283c89
MD5 7de886d03af0947844f241e6ad7cb0a8
BLAKE2b-256 9f0a5a27aae5224ae3ca8b5133692085cf478f1d86e0e6a6558255d4e873a033

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py3.4-linux-x86_64.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py3.4-linux-x86_64.egg
Algorithm Hash digest
SHA256 442be04f2e4be83339188f4df503209e601ecfe6ae57ecb0563b8373402ee87d
MD5 e1e69c35e504a350145ebee815d8ad8c
BLAKE2b-256 3fa3f29112ed28e2eba2426afa4ffa5133afa3ca7a6917766e587ab13ace7be8

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py3.4-linux-i686.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py3.4-linux-i686.egg
Algorithm Hash digest
SHA256 b18af127f5fbff6c43d734748564ed1514c460c6b80aeb4d05b459f9cf6e806a
MD5 2fd9158058b4519f48b3494ea272cba1
BLAKE2b-256 e40e1363e76cec760017109f3d20663abfdc9b71536baef839282fec764577e3

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py2.7-win-amd64.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py2.7-win-amd64.egg
Algorithm Hash digest
SHA256 3b4204ef0bc72227a35434f5fac2465a00601a92d41f722a9d0b0cd19a86a608
MD5 5d26e5658519ed80dd8d708b918d16cf
BLAKE2b-256 034aacef4baa51b4dc656d06f29a17ff3f65d4b18a745057d048bac388b2926c

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py2.7-win32.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py2.7-win32.egg
Algorithm Hash digest
SHA256 72b8877f9f49d065d9dabd08adf70943d4dd6b404ddbb12fb74bc1a1b4b1adb3
MD5 eddfcea85debac520e65bedc3815c25b
BLAKE2b-256 02c3465c0ee5daa10091ac713ff7e511fb2279421afe8ece7a7c64404195d4d1

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py2.7-linux-x86_64.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 963f64224e511aa24b5b8d9e1810ad37439cb81d76bcd12ded010464427803b6
MD5 5a57039ef6cc6ed1510231b3d87749dd
BLAKE2b-256 4207f3194123d76af75f855a522757631f38d92a0325ebc5d959c325ad9c56ea

See more details on using hashes here.

File details

Details for the file DeepCL-8.5.2-py2.7-linux-i686.egg.

File metadata

File hashes

Hashes for DeepCL-8.5.2-py2.7-linux-i686.egg
Algorithm Hash digest
SHA256 8203a534f7da7b2704f0ad3effdae11a1b75a912182b4a2ade44c0cf6d863826
MD5 cbbb59781e2b0d1cbae2f35121eaf579
BLAKE2b-256 1665053c59de6515d912e0729755676b4be3080ddcbe18d087135ce3c1cadc39

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page