Skip to main content

Analyze Data with Pandas-based Networks.

Project description

Anaconda Version Anaconda Downloads Documentation PyPi

DeepGraph

DeepGraph is a scalable, general-purpose data analysis package. It implements a network representation based on pandas DataFrames and provides methods to construct, partition and plot networks, to interface with popular network packages and more.

It is based on a new network representation introduced here. DeepGraph is also capable of representing multilayer networks.

Main Features

This network package is targeted specifically towards Pandas users. Utilizing one of Pandas’ primary data structures, the DataFrame, we represent the (super)nodes of a graph by one set of tables, and their pairwise relations (i.e. the (super)edges of a graph) by another set of tables. DeepGraph’s main features are

  • Create edges: Methods that enable an iterative, yet vectorized computation of pairwise relations (edges) between nodes using arbitrary, user-defined functions on the nodes’ properties. The methods provide arguments to parallelize the computation and control memory consumption, making them suitable for very large data-sets and adjustable to whatever hardware you have at hand (from netbooks to cluster architectures).

  • Partition nodes, edges or a graph: Methods to partition nodes, edges or a graph by the graph’s properties and labels, enabling the aggregation, computation and allocation of information on and between arbitrary groups of nodes. These methods also let you express elaborate queries on the information contained in a deep graph.

  • Interfaces to other packages: Methods to convert to common network representations and graph objects of popular Python network packages (e.g., SciPy sparse matrices, NetworkX graphs, graph-tool graphs).

  • Plotting: A number of useful plotting methods for networks, including drawings on geographical map projections.

Quick Start

DeepGraph can be installed via pip from PyPI

$ pip install deepgraph

or if you’re using Conda, install with

$ conda install -c conda-forge deepgraph

Then, import and get started with:

>>> import deepgraph as dg
>>> help(dg)

Documentation

The official documentation is hosted here: http://deepgraph.readthedocs.io

The documentation provides a good starting point for learning how to use the library. Expect the docs to continue to expand as time goes on.

Development

So far the package has only been developed by me, a fact that I would like to change very much. So if you feel like contributing in any way, shape or form, please feel free to contact me, report bugs, create pull requestes, milestones, etc. You can contact me via email: dominik.traxl@posteo.org

Bug Reports

To search for bugs or report them, please use the bug tracker: https://github.com/deepgraph/deepgraph/issues

Citing DeepGraph

Please acknowledge the authors and cite the use of this software when results are used in publications or published elsewhere. Various citation formats are available here: https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063%2F1.4952963 For your convenience, you can find the BibTex entry below:

@Article{traxl-2016-deep,
    author      = {Dominik Traxl AND Niklas Boers AND J\"urgen Kurths},
    title       = {Deep Graphs - A general framework to represent and analyze
                   heterogeneous complex systems across scales},
    journal     = {Chaos},
    year        = {2016},
    volume      = {26},
    number      = {6},
    eid         = {065303},
    doi         = {http://dx.doi.org/10.1063/1.4952963},
    eprinttype  = {arxiv},
    eprintclass = {physics.data-an, cs.SI, physics.ao-ph, physics.soc-ph},
    eprint      = {http://arxiv.org/abs/1604.00971v1},
    version     = {1},
    date        = {2016-04-04},
    url         = {http://arxiv.org/abs/1604.00971v1}
}

Licence

Distributed with a BSD license:

Copyright (C) 2017-2020 DeepGraph Developers
Dominik Traxl <dominik.traxl@posteo.org>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DeepGraph-0.2.4.tar.gz (183.9 kB view details)

Uploaded Source

Built Distributions

DeepGraph-0.2.4-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (246.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (250.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (246.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (250.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (244.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (249.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (244.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (249.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp312-cp312-win_amd64.whl (252.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

DeepGraph-0.2.4-cp312-cp312-win32.whl (246.7 kB view details)

Uploaded CPython 3.12 Windows x86

DeepGraph-0.2.4-cp312-cp312-musllinux_1_1_x86_64.whl (576.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

DeepGraph-0.2.4-cp312-cp312-musllinux_1_1_i686.whl (558.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

DeepGraph-0.2.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (568.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (551.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp312-cp312-macosx_10_9_x86_64.whl (250.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

DeepGraph-0.2.4-cp311-cp311-win_amd64.whl (253.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

DeepGraph-0.2.4-cp311-cp311-win32.whl (247.7 kB view details)

Uploaded CPython 3.11 Windows x86

DeepGraph-0.2.4-cp311-cp311-musllinux_1_1_x86_64.whl (529.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

DeepGraph-0.2.4-cp311-cp311-musllinux_1_1_i686.whl (519.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

DeepGraph-0.2.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (525.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (513.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp311-cp311-macosx_10_9_x86_64.whl (250.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

DeepGraph-0.2.4-cp310-cp310-win_amd64.whl (253.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

DeepGraph-0.2.4-cp310-cp310-win32.whl (247.9 kB view details)

Uploaded CPython 3.10 Windows x86

DeepGraph-0.2.4-cp310-cp310-musllinux_1_1_x86_64.whl (508.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

DeepGraph-0.2.4-cp310-cp310-musllinux_1_1_i686.whl (502.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

DeepGraph-0.2.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (500.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (492.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp310-cp310-macosx_10_9_x86_64.whl (251.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

DeepGraph-0.2.4-cp39-cp39-win_amd64.whl (251.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

DeepGraph-0.2.4-cp39-cp39-win32.whl (246.4 kB view details)

Uploaded CPython 3.9 Windows x86

DeepGraph-0.2.4-cp39-cp39-musllinux_1_1_x86_64.whl (506.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

DeepGraph-0.2.4-cp39-cp39-musllinux_1_1_i686.whl (499.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

DeepGraph-0.2.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (497.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (490.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp39-cp39-macosx_10_9_x86_64.whl (249.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

DeepGraph-0.2.4-cp38-cp38-win_amd64.whl (253.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

DeepGraph-0.2.4-cp38-cp38-win32.whl (247.9 kB view details)

Uploaded CPython 3.8 Windows x86

DeepGraph-0.2.4-cp38-cp38-musllinux_1_1_x86_64.whl (513.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

DeepGraph-0.2.4-cp38-cp38-musllinux_1_1_i686.whl (510.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

DeepGraph-0.2.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (498.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (494.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp38-cp38-macosx_10_9_x86_64.whl (251.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

DeepGraph-0.2.4-cp37-cp37m-win_amd64.whl (253.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

DeepGraph-0.2.4-cp37-cp37m-win32.whl (247.7 kB view details)

Uploaded CPython 3.7m Windows x86

DeepGraph-0.2.4-cp37-cp37m-musllinux_1_1_x86_64.whl (490.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

DeepGraph-0.2.4-cp37-cp37m-musllinux_1_1_i686.whl (485.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

DeepGraph-0.2.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (483.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (477.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp37-cp37m-macosx_10_9_x86_64.whl (251.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

DeepGraph-0.2.4-cp36-cp36m-win_amd64.whl (261.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

DeepGraph-0.2.4-cp36-cp36m-win32.whl (251.9 kB view details)

Uploaded CPython 3.6m Windows x86

DeepGraph-0.2.4-cp36-cp36m-musllinux_1_1_x86_64.whl (455.2 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

DeepGraph-0.2.4-cp36-cp36m-musllinux_1_1_i686.whl (453.0 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

DeepGraph-0.2.4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (447.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

DeepGraph-0.2.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (440.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

DeepGraph-0.2.4-cp36-cp36m-macosx_10_9_x86_64.whl (247.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file DeepGraph-0.2.4.tar.gz.

File metadata

  • Download URL: DeepGraph-0.2.4.tar.gz
  • Upload date:
  • Size: 183.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4.tar.gz
Algorithm Hash digest
SHA256 6f6305e4811e713ec02a360a489f1f856be63b4aa4ed0e73ff3729db8b22158b
MD5 7de221b8e65247fe343bac3e7061c44f
BLAKE2b-256 1d8b138e11a311d6ef5c211ab64fc128d27b5cce6af14fcbc62d1499ee6c274b

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6760c5c2d8a74e6f4626770e6da7320f76437b6ed05952563b675313675e4783
MD5 bf64363ffd658b9afb2bac44b4e14ef3
BLAKE2b-256 14877ad7fd37a5e26d23f1b0a258d85b02ff882c558d80aa6dc1a1bb5ff8dcba

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9473e0ebc7c2021325b8b8a28c1dc974cd3d577063f4d78dfe7e21c100fceb0e
MD5 235dcfd9ad86acbf46b7d4e814251f02
BLAKE2b-256 803d33e8babdad0b7f7efbe0e4f08c0e65cd0cbc3d1c2ab1b822360504c1e715

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c58066fc0d49f1a763acb86d066c7b721ce0a1d0b2dc9fa6e5ff8cb534a62648
MD5 b2dda4cc3650b9846a1ab53cede7f7cb
BLAKE2b-256 132305b234ba8666203b01f4882a0904e61fe80a860794c73717d9313398e9b5

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8478d6b0029c4de92cffe519e04210c13acf851d25b2f5b6eab3d3ac95772e86
MD5 0add8386dfe26d6269c27cb8f6cf2397
BLAKE2b-256 d907817e08dcd440f2b74ac017a8ca23a6d76b04b82acdc9e151d76fe0f6790f

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47a157989319c4358def830eccc487b446ce63922c3107aace06fb80b0525315
MD5 5e2dee20c7fa3294106ed3d09d3e22bb
BLAKE2b-256 eaa18bab432538356b76a06dee3ca6223b359462d9b231e35786a292182825ba

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f668d3590df655fb5e8594dd9d5ed20ef50cac8f7c30e7ff1df3bef42281ea04
MD5 d50c81e16588c44e3ac35b4a1eec0419
BLAKE2b-256 b2b899ce56523d1fbb55cb22a8224da10657cff7a79b6b9bc90f5e63f55382f7

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b08a3f0cd5edec0695c20def24740f25b29baacb5be497c4171e0bd9d7b993f6
MD5 12ad0dd2c51190a8a3fe35509f0b5d0b
BLAKE2b-256 36400cabcd7144e61197fced9ea8094afbd4fb22c8b6ef4419cb06242b835c42

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d6776df8efbaf9991aad758554cf4ab1ec405eabec80262bec32dfb4b90571eb
MD5 cab88fc1b98aaaa7fb0eb03a5c459c09
BLAKE2b-256 49cfca58c41e060cd0f678808dceaeaaadb5aa362c1889f5f4c8d96849538113

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 28c38a815ef585418a2155738023ad249e4d44184829743b45033c36caf1e0bc
MD5 c2df192aaace8863e57e992efc0bbf18
BLAKE2b-256 e12c88dc98427c9870ae7fdb3121581ef58b31e8f8e732d79f15a514c5944903

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 246.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d8fff635c3cf0160d30b5203e8b4d7e8d7c76c6080c56a71fa066902b72935d2
MD5 7dc17de13d61858d041189547e301551
BLAKE2b-256 23a94d88d6246f1a0462f08a43d700c0d9632f8d927c340ce813a11aef2f1230

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e1d2b89e139f60a0386ccfb8f361b57ec62515d20cdcebad538ced0697b7561f
MD5 b4e17c6bfaebee751fa6ea3785dc6d2f
BLAKE2b-256 01854392571139a6cf20738ae956c3bf613aa87cc267f4f77de6730455c5c13d

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 608362cff4e374e88ec457a0e44bc5aa95411c00916eaf291acc6aa151aa13b2
MD5 81310098c22671d2c9d73abd9871ea8c
BLAKE2b-256 edc56ed932ea43857ba7ba12f83ad92073c25bfd228285dcc0869122b371fce5

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bd1ab8b7b42882609cd64234f6684b1e4348bf8a8bde4657fd5a45761cb8952
MD5 c777d591a543665ee69da422fbce9186
BLAKE2b-256 ad1722369d779adc5d592760e6d5229db18e4d1cb99dd30a867f9c15a63fc8ee

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 80b78f094d5513897ad184c68516b712b165c8dca7258aa05c1d0c6a8c13a568
MD5 52bbbf021edb3909fda26649fc05a320
BLAKE2b-256 da278da5be9d6a9cfc4131d20f3899d03f696f41268e6a4bef4df6510a06db05

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70bc1b4cc60326ee6b84d8b024c172182a584a5417b7aa35077c3e99b9a61f38
MD5 b7dca3f315f39a12bfb701831948e9b1
BLAKE2b-256 ce24ea928f588efd0ec7d6c262960617d68880e886b6f502a69fdd6db22086b6

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33962d9351a5dbeef24c709c3a31554fbb106792b701d5dd3b6030b7b7619648
MD5 065cdc5bd7a1bed56c3dab1f50f5a865
BLAKE2b-256 d0a825399a8092bab58f9214ad606d5e9b443eab806c31befb48fff0ab63486b

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 247.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 88235759b69abc77aa5ae5126bfabcb5178fbf18e9ec0f2fca55e93ddea241c2
MD5 4a3cf1d63a4d1d59b9f0cd647a9d27c0
BLAKE2b-256 fe440ed2efd26321bcc76e72f5b38a124ae03a70abe95472c2d52d49903b3f58

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae25486b25b1f6ad7772738f7a9835245448a9da9e4ac822cfcd59a7eebd7fa5
MD5 43093a349fabda2b85410296b1f775dd
BLAKE2b-256 743c78ba0a367251955a4aec929f329d967e5136a21aec454cd3e015c7c0875c

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 51c6abcb1962b1c5f80d3f6052092e6a5aebccdbd33aa0d6fa73da920cabc062
MD5 c9b3021ba3827bbe9256a09c33f421fb
BLAKE2b-256 e88b7e80fdbca8a9ee1cf4775a2f3d92709aef34c3c2012a1ceaf5dc2780c6e9

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c67f5cccb072dd4527a45ac08eebef9b14d91ef14cb012179896c23d634509bf
MD5 7f78692f74883150a32a0d6822c75081
BLAKE2b-256 884e3964b83755b3598a4802d80bba8171cbc75cfe8bbffb258fd7ef53b10b12

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 edbb538d0aeddb20e5cba7e5d1eb9f853180867dfc27051b3031e84cb782682c
MD5 c1dc95ed0210e27c8ddfc9a41ac1f723
BLAKE2b-256 91e6db54e6753b66a8c26ac80a9a131cb011241b9be3d6ff225f7e0fd9a887bd

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 39b17faf644d387cd582ec0c135ceb874c358eda77a4179bac207942b3b8f7a8
MD5 400bd47871d4ac8329ee4aacb8aeb13c
BLAKE2b-256 e67818df9cad8ad16cc9dc21d90f82f4c15354d93a009c0e0f56bd7a78102376

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2338d1b2b9e2008d007ebe17a060c23a948dace96e834ebcbbb1936b3a324614
MD5 f053b86671e1b029ceae086d539ea4ae
BLAKE2b-256 801c2b94a1f6f6901a4401529b9cee77d6d3eeb66f8797bf0bf5f9ef4b40511b

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 247.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a05810ca35cfd8978471f11340ce4695153f4ef224ff507a4ea9cecc54c40ed3
MD5 0cec686781579b4c5e28aa682e5e6a0f
BLAKE2b-256 b6a975a4e3ed562af292b34b2a647f8ea7c7d36b4402c80ef4707a1848f0b8b7

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d49db953d3e4ed8f5a927c9efde6227f8579161752d63932f0c40b460d644d24
MD5 4ad453bcce0783d5820b73ea06a684cd
BLAKE2b-256 a670e54016daf4eb624020b928106b495d2be88b1218cacad6ff197e494eb5a7

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e506c694200fb0a2eeabc7ada82e6e63fc259593c2fbc0a51ee12706039b4e57
MD5 bee0ab3446365983cb6a557aa4f608dc
BLAKE2b-256 df58a035d3a7974421ee67a8f832f185c18caf4c625cb66a2222d99e90922f06

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09ddf3a0d74d9b935b1ebb9937689f3c6239bc3722ca1f3105e1aeb41298cb5b
MD5 bf3fa0a7db6e3ef4d17e751fbb8ad651
BLAKE2b-256 ffc583ad85a68e87884e116c81ac443b55bd50c33523783e610c177038e155f1

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb274a1f8e4a42eba6fc98d072a07b9569d285bce8def9be0f876d38f730cf21
MD5 b1d0495776e1d9e6b87e2195b0c01f4e
BLAKE2b-256 46f1514f76475986a4d1e6cef234a5672e76eb4f051f98f44f6829e9c017b3ff

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68bd549686e94a09f7cf991505936d290877ebf6222049dbd27b9c6944dd3774
MD5 6a6e58d0a0f91c453a61198ed0cabf61
BLAKE2b-256 230199a7a1e1a8e5087215379d3491660f644a918d4674f102210812301e9df6

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 251.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6fdcb6ac3390081eba694a0794942b6edd82b7879a8030d1f1fc8617cde55c59
MD5 72cee11300daad0e97af07082e6461b4
BLAKE2b-256 7a9b1236f68ed92bad3bbaa8c44f4b3cd8840c2821a6de6556f55c7796559f92

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 246.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c20a0a87e24ec13ee04cc8f32dc189ac8d7efdf0ed9942de2b02c2b30dd7a0e8
MD5 2376092b9b8792642d09f666d55dfce5
BLAKE2b-256 865cb4cc1f58ccdeaf3815f079609a5b503ab2ffc67e7b0780a567410d948704

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1fe4a9924de729d4cc7a6f5ca75785ed6fce801aed9d4392b7117ee019c8a654
MD5 d53f45eee0521febbfb0e59b8da26269
BLAKE2b-256 ca9d75c924800b7632361cfff48c5780294cd28975e56fae387681ddd522da6a

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9d0ea9e7c53af5a284f2ce2b770a05e2d5e80cd294f29f341daa6ec3637d9a88
MD5 5326bc05c145628c1b234e6d6a473901
BLAKE2b-256 bc68468a3350378d7304490432a26622e88887252e982a9baff8cbffac856f1f

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5c5560fe353ccdf0726338d1529aa91061a4d72118821ee141ea7e517d1c722
MD5 a94909d1085740dd296551facc3c1752
BLAKE2b-256 bf511b234aa19833b3264e72cc98f26a95b4266f0cc37506ff2c5072aa2b37f6

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9d1825587742a26493ca8a19cea529eb8c2b32c353ae823ac13a3d01ea1bad20
MD5 8db0a558b2e895a6cfc7a212d728be3a
BLAKE2b-256 b5c60d98e17498581afc8cabe7a563eb6d2fbbfc80205cfd5fbac7b057b87277

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 caba73c88012f5f5456bff2fe8d36c353535e508422f5754a30441ba024fb515
MD5 03c8b956fa5b4142087b29edf9cba3ae
BLAKE2b-256 f0a464de183812c477652abaf0a0bbb882fed32b9668191617a756d142708695

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 253.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cc27862f29a264d7faeed1ab08ac42835c9e7a4e6a76f72503a4d7b52ec6875e
MD5 91a1d5fa63adc35c72e284cbd9a9fb48
BLAKE2b-256 aa100053d5a97d8a15ff17b9cdcd1063ef60ee1d4634d5d04d3195b2692d01e4

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 247.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9dce2e3d67dcc4fd86b84a93269162f5ae4226276d338b1cdf605c292d5d6715
MD5 ca43537d7ceff9a217ded1151fb49cb3
BLAKE2b-256 37e6a8b83a400d5cd83817d2967bddab34580779d8752815129dfabc13eef1f2

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6de9a4129516793ed06f580a7ccd6c6e62f00f68ba2ae7c0d01e7d87dd1cba26
MD5 0a24def44160eee984d40b4f78e0cefc
BLAKE2b-256 71f29358ec6b936ca654533af88ca3f8865d260207795e6f4441b866e96ecc4c

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f1a955d902a481dba6750fa44620cfcabc7da2ef2ba6c001ed08a97f5878fa88
MD5 4cc97c848a5968acd03ef721149fefa2
BLAKE2b-256 b01ae38fb829daba905bec037e0092dd81d075ed16042c118d1c542d76a400a9

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d128bbfb18ce6b2b7bc40dede94b8dd8d9d18a18a2199175817543b9e4484c2
MD5 fc9e503985f796a917f488a8fa24da04
BLAKE2b-256 e39df265f5ec2573e9811fae7058517875201b2738e475b9cbfaaab8dc7056e7

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7ced3879c97e9ecaccf32bbe22fd12447f7d704545cbb3d31fff93060837d719
MD5 2c6f8ad96eefbe0fb614028efe47472b
BLAKE2b-256 957124043e941506052dc8e70f1e7e8779df09bde255d9ebba6197b309736a42

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c0bce83c49f4675963e6892bf593c73b794475b34d19711b0386c34f8856bff
MD5 dd73c451d8683b7a17eeba323b657eba
BLAKE2b-256 81e0561eed4df8a1d787504ccb8573ff237e71adeef1db8404bc415c4d62833e

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 253.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0d4478d56950f4166ec4a7ad473aa14c3553f56f5da4482517a8008d3ed690af
MD5 6de67b9dfb46e24795eeca892c0646ff
BLAKE2b-256 d9d8c2cb398b50a0b5d0e2628452141439c1342b837db3385065f0b2c2ffc59d

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 247.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 62e10006742cf360706d29a4e6925391b03c2c6ff22703e4e06034a015e6c129
MD5 b6c3d16486d7a57a018523572ffdf9dc
BLAKE2b-256 020c7e81643c535f50d7d8badadb8b10030175cbd5b1a342cd7859cafacb06b5

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 180606f12680f835e9ec1a921a997f744c13d15e11581323bbcf649dc0b101dc
MD5 3e83fc531b0e4b249e45d3edce395b79
BLAKE2b-256 e64d3b2ed3c431f634c168f37a48a14d8b784a87089e373e9389b760f1c2f023

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fa42ddadce5dcbd2331e61fa475c34244be48c854b3a7464c9f5df49419d47b3
MD5 f878d7595a66a1ae7465e7436fd7a659
BLAKE2b-256 bbce0806f4804910818b8d52affc668e5d84c7d7cf6dcaec68434bb8474ee7b8

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c2e1adf76e305f5a1029f28b041efccba79e000be991af31a31a09eee61e317
MD5 7d5072ff3f1ca3248b486f4f2ec7be6c
BLAKE2b-256 ed395678db6e9382bed53ba6e9f825fb43f5f7c2815469a885fa03cface315b7

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 73726028e291e3934ea83cfa5664cf958b50576646123aaa560a415d58685004
MD5 a75be10bb1f254a1264c7f4443c17830
BLAKE2b-256 e7192d8c0ab853c7582cccaa0359606bb4aa62e7e57cb9a4a316718734c0edd0

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 342a1cfb103a0e81f39d86295d10ac608d779805c90394134eb4d431e5722ea9
MD5 9170922c5838b05e363a0bb3ce781c72
BLAKE2b-256 edf0c5b91a260801ca85e01f6369aad2cd046c62e57e69d11e32ef461a720cfe

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 261.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cf75fc394281437ab89787ddd91683ab7778327c250c3dfe5002bb04e09e3cc6
MD5 1d298ad3e6d67b4ce40ff4aae99fd1ff
BLAKE2b-256 c9d431014748c31b174d83f275887fa1a224f1be1b140d43204af8c09d03a8e0

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: DeepGraph-0.2.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 251.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for DeepGraph-0.2.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e75c29b51f7668c1f01971a94080a6e90d77ac9bedb6dbc974b583f348aa0770
MD5 1c4f3987117b647ab9d842a13d9eaad7
BLAKE2b-256 c6c41fd1c9c05b404d286d6d9481f923c31be9a7204c77797978a7216903b1f3

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f064f5d2a2e5f4abb467af316ac364a0f3c27d969f53b6234b56d543bc5d3417
MD5 764207964b5f90eebed6d049a55489ad
BLAKE2b-256 fe4222d0b6e4ee2cd5e81398976db3518b738ad3910f36f398187c00b21ff0fd

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 297178bb85f26c95424468fc6997c4c83acd0a4303411e5df25e64c8c469ce97
MD5 6e7f4a8162a35118668f69b1fe191f6f
BLAKE2b-256 d66cb241529cb58309b944c3b6b71615d2dd69dd760cda82224cd56266a72ae4

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4656864316d6314373c2a542fd8b7192e8b5bba52a68a6362b430c5530259750
MD5 8e538280f3b9311dae95b313484fb40d
BLAKE2b-256 9b261b21497c2dd0e23cd5690288dd52f579125380187a87b6038a5eea4202dd

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4907c44a9bdf93f5e83152c0a07467e73f0f9f1bc1fa003574796d4c62b1d7f5
MD5 c27de6720b525c9cf03f1fbe6020a48c
BLAKE2b-256 765ab12952c9a5b646c552bc7f2517279b64dc0d8d6fa4d6df8e936b51764e63

See more details on using hashes here.

File details

Details for the file DeepGraph-0.2.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for DeepGraph-0.2.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 078d53b7ae4253030dca59c6ddd10c47fad3ee94dcca436c6ca397f61a5dad68
MD5 a7334917a3a4f9822e018864ed24bb83
BLAKE2b-256 0e3f71cd11c7c0761a8dbccc6f9eddd782cceba292d632b7ab478c3f1a1a6459

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page