Skip to main content

Deep Learning framework from scratch

Project description

DLstorm: Deep Learning Framework

Summary:

Deep Learning Framework from scratch, with an API of a combination of pytorch and keras APIs, only uses numpy for tensor operations.

Pip install:

pip install DLstorm

Layers & DL classes in framework:

  • Conv2d
  • MaxPool2d
  • BatchNorm2d
  • Flatten
  • Dropout
  • Linear
  • ReLU
  • Softmax
  • SgdWithMomentum
  • Adam
  • CrossEntropyLoss
  • Xavier
  • He

Model building:

layers = [
    Conv2d(in_channels=1, out_channels=32,
           kernel_size=3, stride=1, padding='same'),
    BatchNorm2d(32),
    Dropout(probability=0.3),
    ReLU(),

    Conv2d(in_channels=32, out_channels=64,
           kernel_size=3, stride=1, padding='same'),
    BatchNorm2d(64),
    ReLU(),
    MaxPool2d(kernel_size=2, stride=2),

    Conv2d(in_channels=64, out_channels=64,
           kernel_size=3, stride=1, padding='same'),
    BatchNorm2d(64),
    ReLU(),
    MaxPool2d(kernel_size=2, stride=2),

    Flatten(),

    Linear(in_features=64*7*7, out_features=128),
    ReLU(),
    Linear(128, 64),
    ReLU(),
    Linear(64, 10),
    SoftMax(),
]

model = Model(layers)

Or

model = Model()

model.append_layer(Conv2d(in_channels=1, out_channels=32,
                          kernel_size=3, stride=1, padding='same'))
model.append_layer(BatchNorm2d(32))
model.append_layer(ReLU())
model.append_layer(Conv2d(in_channels=32, out_channels=64,
                          kernel_size=3, stride=1, padding='same'))
model.append_layer(BatchNorm2d(64))
model.append_layer(ReLU())
model.append_layer(MaxPool2d(kernel_size=2, stride=2))

model.append_layer(Conv2d(in_channels=64, out_channels=64,
                          kernel_size=3, stride=1, padding='same'))
model.append_layer(BatchNorm2d(64))
model.append_layer(ReLU())
model.append_layer(MaxPool2d(kernel_size=2, stride=2))
model.append_layer(Flatten())
model.append_layer(Linear(in_features=64*7*7, out_features=128))
model.append_layer(ReLU())
model.append_layer(Linear(in_features=128, out_features=64))
model.append_layer(ReLU())
model.append_layer(Linear(in_features=64, out_features=10))
model.append_layer(SoftMax())

Model compile:

batch_size = 16
model.compile(optimizer=Adam(learning_rate=5e-3, mu=0.98, rho=0.999), loss=CrossEntropyLoss(),
              batch_size=batch_size, metrics=['accuracy'])

Model training:

epochs = 25
history = model.fit(x_train=train_images, y_train=train_labels, x_val=val_images, y_val=val_labels, epochs=epochs)

Model performance:

plt.plot(history['accuracy'])
plt.plot(history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DeepStorm-1.0.3.tar.gz (23.1 kB view hashes)

Uploaded Source

Built Distribution

DeepStorm-1.0.3-py3-none-any.whl (17.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page