Skip to main content

A Flexible Deep Learning Approach to Fuzzy String Matching

Project description

DeezyMatch (Deep Fuzzy String Matching)

A Flexible Deep Neural Network Approach to Fuzzy String Matching

DeezyMatch can be applied for performing the following tasks:

  • Toponym matching
  • Candidate selection for entity linking systems
  • Record linkage

Table of contents

Data and directory structure in tutorials

In the tutorials, we assume the following directory structure:

.
├── dataset
│   ├── characters_v001.vocab
│   └── dataset-string-similarity_test.txt
└── inputs
    └── input_dfm.yaml

For this, we first create a test directory (note that we strongly recommend creating this directory outside of the DeezyMarch directory cloned and installed following the installation section. After installation, DeezyMatch command lines and modules are accessible from anywhere on your local machine.):

mkdir ./test_deezy
cd ./test_deezy
mkdir dataset inputs
# Now, copy characters_v001.vocab, dataset-string-similarity_test.txt and input_dfm.yaml from DeezyMatch repo
# Arrange the files according to the above directory structure

These three files can be downloaded directly from inputs and dataset directories on DeezyMatch repo.

Note on vocabulary: characters_v001.vocab combines all characters from the different datasets we have used in our experiments (Santos et al, 2018 and other datasets which will be described in a forthcoming publication). It consists of 7,540 characters from multiple alphabets, containing special characters.

dataset-string-similarity_test.txt contains 9995 example rows. The original dataset can be found here: https://github.com/ruipds/Toponym-Matching.

Run DeezyMatch as a Python module or via command line

Refer to installation section to set-up DeezyMatch on your local machine.

:warning: In the following tutorials, we assume a directory structure specified in the this section.

Written in the Python programming language, DeezyMatch can be used as a stand-alone command-line tool or can be integrated as a module with other Python codes. In what follows, we describe DeezyMatch's functionalities in different examples and by providing both command lines and python modules syntaxes.

Train a new model

DeezyMatch train module can be used to train a new model:

from DeezyMatch import train as dm_train

# train a new model
dm_train(input_file_path="./inputs/input_dfm.yaml", 
         dataset_path="dataset/dataset-string-similarity_test.txt", 
         model_name="test001")

The same model can be trained via command line:

DeezyMatch -i ./inputs/input_dfm.yaml -d dataset/dataset-string-similarity_test.txt -m test001

A new model directory called test001 will be created in models directory (as specified in the models_dir in the input file).

:warning: Dataset (e.g., dataset/dataset-string-similarity_test.txt in the above command)

  • Currently, the third column (label column) should be one of (case-insensitive): ["true", "false", "1", "0"]
  • Delimiter is fixed to \t for now.

DeezyMatch keeps some information about the metrics (e.g., loss/accuracy/precision/recall/F1) for each epoch. It is possible to plot the log-file by:

DeezyMatch -lp ./models/test001/log.txt -ld test001

In this command,

  • -lp: runs the log plotter
  • -ld is a name assigned to the log which will be used in the figure.

This command generates a figure log_test001.png and stores it in models/test001 directory.

DeezyMatch stores models, vocabularies, input file, log file and checkpoints (for each epoch) in the following directory structure:

models/test001
├── checkpoint00000.model
├── checkpoint00001.model
├── checkpoint00002.model
├── checkpoint00003.model
├── checkpoint00004.model
├── input_dfm.yaml
├── log.txt
├── log_test001.png
├── test001.model
└── test001.vocab

Finetune a pretrained model

finetune module can be used to fine-tune a pretrained model:

from DeezyMatch import finetune as dm_finetune

# fine-tune a pretrained model
dm_finetune(input_file_path="./inputs/input_dfm.yaml", 
            dataset_path="dataset/dataset-string-similarity_test.txt", 
            model_name="finetuned_test001",
            pretrained_model_path="./models/test001/test001.model", 
            pretrained_vocab_path="./models/test001/test001.vocab")

dataset_path specifies the dataset to be used for finetuning. For this example, we use the same dataset as in training however, other datasets are normally used to finetune an already trained model. The paths to model and vocabulary of the pretrained model are specified in pretrained_model_path and pretrained_vocab_path, respectively.

The same can be done via command line:

DeezyMatch -i ./inputs/input_dfm.yaml -d dataset/dataset-string-similarity_test.txt -m finetuned_test001 -f ./models/test001/test001.model -v ./models/test001/test001.vocab 

:warning: Note that it is also possible to add the argument -n 100 to the above command to only use 100 rows for fine-tuning. In this example, we use all the rows. If -n flag is not specified, the train/valid/test proportions are read from the input file.

A new fine-tuned model called finetuned_test001 will be stored in models directory. To fine-tune the pretrained model, two components in the neural network architecture were frozen, that is, not changed during fine-tuning (see layers_to_freeze in the input file). When running the above command, DeezyMatch lists the parameters in the model and whether or not they will be used in finetuning:

============================================================
List all parameters in the model
============================================================
emb.weight False
rnn_1.weight_ih_l0 False
rnn_1.weight_hh_l0 False
rnn_1.bias_ih_l0 False
rnn_1.bias_hh_l0 False
rnn_1.weight_ih_l0_reverse False
rnn_1.weight_hh_l0_reverse False
rnn_1.bias_ih_l0_reverse False
rnn_1.bias_hh_l0_reverse False
rnn_1.weight_ih_l1 False
rnn_1.weight_hh_l1 False
rnn_1.bias_ih_l1 False
rnn_1.bias_hh_l1 False
rnn_1.weight_ih_l1_reverse False
rnn_1.weight_hh_l1_reverse False
rnn_1.bias_ih_l1_reverse False
rnn_1.bias_hh_l1_reverse False
attn_step1.weight False
attn_step1.bias False
attn_step2.weight False
attn_step2.bias False
fc1.weight True
fc1.bias True
fc2.weight True
fc2.bias True
============================================================

The first column lists the parameters in the model, and the second column specifies if those parameters will be used in the optimization or not. In our example, we set ["emb", "rnn_1", "attn"] and all the parameters except for fc1 and fc2 will not be changed during the training.

In fact, it is possible to print all parameters in a model by:

DeezyMatch -pm models/finetuned_test001/finetuned_test001.model

which generates similar output as above.

In fine-tuning, it is also possible to specify a directory name for the argument pretrained_model_path. For example:

from DeezyMatch import finetune as dm_finetune

# fine-tune a pretrained model
dm_finetune(input_file_path="./inputs/input_dfm.yaml", 
            dataset_path="dataset/dataset-string-similarity_test.txt", 
            model_name="finetuned_test001",
            pretrained_model_path="./models/test001")

In this case, DeezyMatch will create the pretrained_model_path and pretrained_vocab_path using the input directory name, namely, ./models/test001/test001.model and ./models/test001/test001.vocab.

Model inference

When a model is trained/fine-tuned, inference module can be used for predictions/model-inference. Again, we use the same dataset (dataset/dataset-string-similarity_test.txt) as before in this example. The paths to model and vocabulary of the pretrained model are specified in pretrained_model_path and pretrained_vocab_path, respectively.

from DeezyMatch import inference as dm_inference

# model inference
dm_inference(input_file_path="./inputs/input_dfm.yaml",
             dataset_path="dataset/dataset-string-similarity_test.txt", 
             pretrained_model_path="./models/finetuned_test001/finetuned_test001.model", 
             pretrained_vocab_path="./models/finetuned_test001/finetuned_test001.vocab")

Similarly via command line:

DeezyMatch --deezy_mode inference -i ./inputs/input_dfm.yaml -d dataset/dataset-string-similarity_test.txt -m ./models/finetuned_test001/finetuned_test001.model  -v ./models/finetuned_test001/finetuned_test001.vocab  -mode test

The inference component creates a file: models/finetuned_test001/pred_results_dataset-string-similarity_test.txt in which:

# s1_unicode    s2_unicode      prediction      p0      p1      label
la dom nxy      ลําโดมน้อย        1       0.1635  0.8365  1
krutoy  крутой  1       0.0632  0.9368  1
sharunyata      shartjugskij    0       0.8696  0.1304  0
sutangcun       羊山村  1       0.4821  0.5179  0
rongreiyn ban hwy h wk cxmthxng rongreiyn ban hnxng xu  0       0.9156  0.0844  0
同心村  tong xin cun    1       0.1178  0.8822  1
engeskjæran     abrahamskjeret  0       0.8976  0.1024  0
izumo-zaki      tsumo-zaki      1       0.3394  0.6606  1

p0 and p1 are probabilities assigned to labels 0 and 1, respectively. For example, in the first row, the actual label is 1 (last column), the predicted label is 1 (third column), and the model confidence on the predicted label is 0.8365. In these examples, DeezyMatch correctly predicts the label in all rows except for sutangcun 羊山村. By looking at the confidence scores, it is clear that DeezyMatch is not confident which label to assign (p0=0.4821 and p1=0.5179). It should be noted, in this example and for showcasing DeezyMatch's functionalities, the model was trained and used for model inference on one dataset. In practice, we train a model on a dataset and use it for prediction on another dataset(s). Also, the dataset used to train the above model has around ~10K rows. Again, in practice, we use larger datasets for training and fine-tuning.

Generate query and candidate vectors

inference module can also be used to generate vector representations for a set of strings in a dataset. This is a required step for alias selection (which we will talk about later. We first create vector representations for query mentions (we assume the query mentions are stored in dataset/dataset-string-similarity_test.txt):

from DeezyMatch import inference as dm_inference

# generate vectors for queries and candidates
dm_inference(input_file_path="./inputs/input_dfm.yaml",
             dataset_path="dataset/dataset-string-similarity_test.txt", 
             pretrained_model_path="./models/finetuned_test001/finetuned_test001.model", 
             pretrained_vocab_path="./models/finetuned_test001/finetuned_test001.vocab",
             inference_mode="vect",
             query_candidate_mode="q",
             scenario="test")

Compared to the previous section, here we have three additional arguments:

  • inference_mode="vect": generate vector representations for the first column in dataset_path.
  • query_candidate_mode: can be "q" or "c" for queries and candidates, respectively.
  • scenario: directory (inside queries or candidates directories) where all the vector representations are stored.

Alternatively, the same can be done via command line:

DeezyMatch --deezy_mode inference -i ./inputs/input_dfm.yaml -d dataset/dataset-string-similarity_test.txt -m ./models/finetuned_test001/finetuned_test001.model -v ./models/finetuned_test001/finetuned_test001.vocab -mode vect -qc q --scenario test

The resulting directory structure is:

queries
└── test
    ├── embed_queries
    ├── input_dfm.yaml
    ├── log.txt
    └── queries.df

(embed_queries contains all the vector representations).

We repeat this step for candidates (again, we use the same dataset):

from DeezyMatch import inference as dm_inference

# generate vectors for queries and candidates
# Note the only difference compared to the previous command is query_candidate_mode="c"
dm_inference(input_file_path="./inputs/input_dfm.yaml",
             dataset_path="dataset/dataset-string-similarity_test.txt", 
             pretrained_model_path="./models/finetuned_test001/finetuned_test001.model", 
             pretrained_vocab_path="./models/finetuned_test001/finetuned_test001.vocab",
             inference_mode="vect",
             query_candidate_mode="c",
             scenario="test")

or via command line:

DeezyMatch --deezy_mode inference -i ./inputs/input_dfm.yaml -d dataset/dataset-string-similarity_test.txt -m ./models/finetuned_test001/finetuned_test001.model -v ./models/finetuned_test001/finetuned_test001.vocab -mode vect -qc c --scenario test

The resulting directory structure is:

candidates
└── test
    ├── candidates.df
    ├── embed_candidates
    ├── input_dfm.yaml
    └── log.txt

Candidate ranker and assembling vector representations

Before using the candidate_ranker module of DeezyMatch, we need to:

  1. Generate vector representations for both query and candidate mentions
  2. Combine vector representations

Step 1 is already discussed in detail in the previous section: Generate query and candidate vectors.

:warning: queries and candidates directories need to be in the same directory, for example:

├── candidates
│   └── test
├── dataset
│   ├── characters_v001.vocab
│   └── dataset-string-similarity_test.txt
├── inputs
│   └── input_dfm.yaml
├── models
│   ├── finetuned_test001
│   └── test001
└── queries
    └── test

Combine vector representations

This step is required if query or candidate vectors are stored on several files (normally the case!). combine_vecs module can assemble those vector representations and store the results in combined/output_scenario directory (output_scenario is an argument in combine_vecs function):

from DeezyMatch import combine_vecs

# combine vectors
combine_vecs(qc_modes=['q', 'c'], 
             rnn_passes=['fwd', 'bwd'], 
             input_scenario='test', 
             output_scenario='test', 
             print_every=10)

Here, qc_modes specifies that combine_vecs should assemble both query and candidate embeddings stored in input_scenario directory (input_scenario is a directory inside queries or candidates directories). rnn_passes tells combine_vecs to assemble all vectors generated in both forward and backward RNN/GRU/LSTM passes (we have a backward pass only if bidirectional is set to True in the input file).

Similarly, this can be done via command line:

DeezyMatch --deezy_mode combine_vecs -qc q,c -p fwd,bwd -sc test -combs test

In this command, compared to combine_vecs module explained above:

  • -qc: qc_modes
  • -p: rnn_passes
  • -sc: input_scenario
  • -combs: output_scenario

The results are sored in the output_scenario (in python module mode) or -combs (in command-line mode) as follows:

combined
└── test
    ├── candidates_bwd.pt
    ├── candidates_bwd_id.pt
    ├── candidates_bwd_items.npy
    ├── candidates_fwd.pt
    ├── candidates_fwd_id.pt
    ├── candidates_fwd_items.npy
    ├── input_dfm.yaml
    ├── queries_bwd.pt
    ├── queries_bwd_id.pt
    ├── queries_bwd_items.npy
    ├── queries_fwd.pt
    ├── queries_fwd_id.pt
    ├── queries_fwd_items.npy
    └── test_candidates_deezymatch.pkl

CandidateRanker

Various options are available to find a set of candidates (from a dataset) for a given query in the same or another dataset.

  • Select candidates based on L2-norm distance (aka faiss distance):
from DeezyMatch import candidate_ranker

# Find candidates
candidates_pd = \
    candidate_ranker(scenario="./combined/test/", 
                     ranking_metric="faiss", 
                     selection_threshold=5., 
                     num_candidates=1, 
                     search_size=4, 
                     output_filename="test_candidates_deezymatch", 
                     pretrained_model_path="./models/finetuned_test001/finetuned_test001.model", 
                     pretrained_vocab_path="./models/finetuned_test001/finetuned_test001.vocab", 
                     number_test_rows=20)

scenario is the directory that contains all the assembled vectors (see).

ranking_metric: choices are faiss (used here, L2-norm distance), cosine (cosine similarity), conf (confidence as measured by DeezyMatch prediction outputs).

selection_threshold: changes according to the ranking_metric:

A candidate will be selected if:
    faiss-distance <= threshold
    cosine-similarity >= threshold
    prediction-confidence >= threshold

:warning: Note that cosine and conf scores are between [0, 1] while faiss distance can take any values from [0, +∞).

search_size: At each iteration, the selected ranking metric between a query and candidates (with the size of search_size) are computed, and if the number of desired candidates (specified by num_candidates) is not reached, a new batch of candidates with the size of search_size is tested. This continues until candidates with the size of num_candidates are found or all the candidates are tested.

The DeezyMatch model and its vocabulary are specified by pretrained_model_path and pretrained_vocab_path, respectively.

number_test_rows: only for testing. It specifies the number of queries to be used for testing.

The results can be accessed directly from candidates_pd variable (see the above command). Also, they are saved in combined/test/test_candidates_deezymatch.pkl (specified by output_filename) which is in a pandas dataframe fromat. The first few rows are:

                query                     pred_score              faiss_distance                  cosine_sim    candidate_original_ids  query_original_id  num_all_searches
id                                                                                                                                                                         
0          la dom nxy         {'la dom nxy': 0.7165}         {'la dom nxy': 0.0}         {'la dom nxy': 1.0}         {'la dom nxy': 0}                  0                 4
1              krutoy             {'krutoy': 0.7733}             {'krutoy': 0.0}             {'krutoy': 1.0}             {'krutoy': 1}                  1                 4
2          sharunyata         {'sharunyata': 0.7062}         {'sharunyata': 0.0}         {'sharunyata': 1.0}         {'sharunyata': 2}                  2                 4
3           sutangcun          {'sutangcun': 0.6194}          {'sutangcun': 0.0}          {'sutangcun': 1.0}          {'sutangcun': 3}                  3                 4

As expected, candidate mentions (in pred_score, faiss_distance, cosine_sim and candidate_original_ids) are the same as the queries (second column), as we used one dataset for both queries and candidates.

Similarly, the above results can be generated via command line:

DeezyMatch --deezy_mode candidate_ranker -comb ./combined/test -rm faiss -t 5 -n 1 -sz 4 -o test_candidates_deezymatch -mp ./models/finetuned_test001/finetuned_test001.model -v ./models/finetuned_test001/finetuned_test001.vocab -tn 20

In this command, compared to candidate_ranker module explained above:

  • -comb: scenario
  • -rm: ranking_metric
  • -t: selection_threshold
  • -n: num_candidates
  • -sz: search_size
  • -o: output_filename
  • -mp: pretrained_model_path
  • -v: pretrained_vocab_path
  • -tn: number_test_rows

Other methods

  • Select candidates based on DeezyMatch predictions and their confidence:
from DeezyMatch import candidate_ranker

# Find candidates
candidates_pd = \
    candidate_ranker(scenario="./combined/test/", 
                     ranking_metric="conf", 
                     selection_threshold=0.51, 
                     num_candidates=1, 
                     search_size=4, 
                     output_filename="test_candidates_deezymatch", 
                     pretrained_model_path="./models/finetuned_test001/finetuned_test001.model", 
                     pretrained_vocab_path="./models/finetuned_test001/finetuned_test001.vocab", 
                     number_test_rows=20)

Note that the only difference compared to the previous command is ranking_metric="conf".

Similarly via command line:

DeezyMatch --deezy_mode candidate_ranker -comb ./combined/test -rm conf -t 0.51 -n 1 -sz 4 -o test_candidates_deezymatch -mp ./models/finetuned_test001/finetuned_test001.model -v ./models/finetuned_test001/finetuned_test001.vocab -tn 20
  • Select candidates based on cosine similarity:
from DeezyMatch import candidate_ranker

# Find candidates
candidates_pd = \
    candidate_ranker(scenario="./combined/test/", 
                     ranking_metric="cosine", 
                     selection_threshold=0.51, 
                     num_candidates=1, 
                     search_size=4, 
                     output_filename="test_candidates_deezymatch", 
                     pretrained_model_path="./models/finetuned_test001/finetuned_test001.model", 
                     pretrained_vocab_path="./models/finetuned_test001/finetuned_test001.vocab", 
                     number_test_rows=20)

Or via command line:

DeezyMatch --deezy_mode candidate_ranker -comb ./combined/test -rm cosine -t 0.51 -n 1 -sz 4 -o test_candidates_deezymatch -mp ./models/finetuned_test001/finetuned_test001.model -v ./models/finetuned_test001/finetuned_test001.vocab -tn 20

Installation

We strongly recommend installation via Anaconda:

  1. Refer to Anaconda website and follow the instructions.

  2. Create a new environment for DeezyMatch

conda create -n py37deezy python=3.7
  1. Activate the environment:
conda activate py37deezy

We have provided some Jupyter Notebooks to show how different components in DeezyMatch can be run. To allow the newly created py37deezy environment to show up in the notebooks:

python -m ipykernel install --user --name py37deezy --display-name "Python (py37deezy)"
  1. Clone DeezyMatch repositories on your local machine.

  2. Install DeezyMatch dependencies:

cd /path/to/my/DeezyMatch
pip install -r requirements.txt
  1. Install DeezyMatch:
cd /path/to/my/DeezyMatch
python setup.py install

Alternatively:

cd /path/to/my/DeezyMatch
pip install -v -e .
  1. Continue with the Tutorial!

:warning: If you get ModuleNotFoundError: No module named '_swigfaiss' error when running candidateRanker.py, one way to solve this issue is by:

pip install faiss-cpu --no-cache

Refer to this page.

Credits

This project extensively uses the ideas/neural-network-architecture published in https://github.com/ruipds/Toponym-Matching.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DeezyMatch-1.0.1.tar.gz (38.5 kB view details)

Uploaded Source

File details

Details for the file DeezyMatch-1.0.1.tar.gz.

File metadata

  • Download URL: DeezyMatch-1.0.1.tar.gz
  • Upload date:
  • Size: 38.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.1.post20200710 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for DeezyMatch-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e8846dc6c8e93ada7e2d9ed0307c2581ba1fbe99191d0b14dacc9f7b3716e2a3
MD5 97496710f65cc65358be55c5a3067ce5
BLAKE2b-256 7010ac08567697a070f6a514bcc7019e3393adcc5316e0fdfeef1750b2fd54a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page