Analysis tools for electrochemistry and mass spectrometry and a lot in between
Project description
EC_MS provides a powerful object-oriented interface to electrochemistry data, mass spectrometry data, and especially the combination of these two types of datasets produced by electrochemistry - mass spectrometry (EC-MS) techniques such as differential electrochemical mass spectrometry (DEMS) and chip-based EC-MS.
EC_MS has grown in concert with the chip EC-MS technology sold by Spectro Inlets, but is especially useful data sets from other hardware and software (see below), as it automates the tedious task of ligning up the datasets in time.
The primary object-oriented interface for this is the Dataset class. For example:
>>> from EC_MS import Dataset
>>> MS_dataset = Dataset('MS_data.txt', data_type='MS')
>>> EC_dataset = Dataset('EC_data.mpt', data_type='EC')
>>> dataset = MS_dataset + EC_dataset # calls the function EC_MS.synchronize()
>>> dataset.plot_experiment() # EC data in lower panel, MS data in upper panel
In this example, the MS and EC datasets are combined by lining up all of the time variables based on timestamps read in the headers of the files.
It is easy to manipulate the datasets based on the electrochemistry program
>>> from EC_MS import CyclicVoltammagram
>>> cv = CyclicVoltammagram(Dataset)
>>> cv.normalize(RE_vs_RHE=0.715)
>>> cv.redefine_cycle(V=0.45, redox=1) # defines when the cycle counter increases
>>> cycle_1 = cv[1] # selects one cycle
>>> cycle_1.plot(masses=['M2', 'M44']) # electrochemical potential on the x-axis
And that’s just a small teaser. Additional functionality includes:
object-oriented interface to mass spectra with the Spectrum and Spectra classes
Calibration functions and classes for quantitative data analysis and plotting
Thermochemistry and Electrolyte subpackages for calculating standard potentials and chemical equilibrium
Mass-transport modelling of products and reactants in the working volume between the electrode and the vacuum inlet
ohmic drop correction and automated quantitative comparisons of cyclic voltammagrams
Full documentation is pending!
Installation
EC_MS is pip-installable! Just type in your terminal or Anaconda prompt:
$ pip install EC_MS
The in-development version is available on github.
EC_MS requires numpy, scipy, and matplotlib. I recommend using Anaconda python, and writing and running your scripts with spyder. This has proven the easiest to set up on all operating systems I’ve tried.
Supported Data Types
Mass Spectrometry
.tsv files from Spectro Inlets’ Zilien (data_type=”SI”)
.dat files (both Bin.dat and Scan.dat) from Pfeiffer Vacuum’s PVMassSpec (data_type=”PVMS”)
.txt files from cinfdata. (data_type=”MS”)
.txt files from Stanford Reasearch Systsms’ Residual Gas Analyzer (data_type=”RGA”)
.txt files from MKS’s Process Eye Professional software (data_type=”MKS”)
Electrochemistry
.tsv files from Spectro Inlets’ Zilien (data_type=”SI”)
.mpt files from BioLogic’s EC-Lab (data_type=”EC”)
.txt files from CH Instruments software (data_type=”CHI”)
Full documentation is pending!
If you would like support for another file type, write to me.
References
This python package was first described in:
Daniel B. Trimarco and Soren B. Scott, et al. Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity. Electrochimica Acta, 2018.
Its functionality is demonstrated, a bit more up-to-date, in the figures and footnotes of:
Soren B. Scott. Isotope-Labeling Studies in Electrocatalysis for Renewable Energy Conversion and the Net CO2 Impact of this PhD Project. PhD Thesis, 2019..
Other articles with figures and data analysis by EC_MS include:
Anna Winiwarter and Luca Silvioli, et al. Towards an Atomistic Understanding of Electrocatalytic Partial Hydrocarbon Oxidation: Propene on Palladium. Energy and Environmental Science, 2019.
Claudie Roy, Bela Sebok, Soren B. Scott, et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nature Catalysis, 2018.
Project Information
This is a pre-alpha version, so it is buggy. Please log issues on github to help me improve it.
EC_MS is completely free and open-source.
If you have questions or if you’d like to contribute, please contact me.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for EC_MS-0.7.1-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58854a505c957f2783c5906cfdd83c33089a0ebea6685adf0522146dd65e8bfc |
|
MD5 | f7023564516cb3d7edd26e9ebe982071 |
|
BLAKE2b-256 | 8035bba5007c86aaf4b946c344e6721dfa39baef84780f44e3c7519621f06178 |