Code to export arbitrarily large areas of data from Earth Engine to local storage and optionally process data locally afterward
Project description
Earth Engine Downloader
EEDL is a Python package that makes downloading and processing of bulk data from Earth Engine feasible and simple. Current support includes individual image exports, as well as a helper class that will iterate through items in a filtered ImageCollection and export them all iteratively.
Many existing workflows exist for downloading areas small enough to fit into a single tile, but this tool uses Earth Engine's functionality to tile larger and full resolution exports, then download the pieces and reassemble them, with optional further processing the data using an arbitrary function (zonal statistics tools are included).
Earth Engine's export quotas still apply, especially for EECUs. For academic accounts, they are frequently generous - we have not tested them on a commercial account.
Installation
EEDL users should take care to install the dependency on GDAL before installing EEDL itself. See below for more information.
After installing GDAL, EEDL is available on PyPI via pip as python -m pip install eedl
, and can also
be downloaded from the GitHub releases page.
EEDL is tested on Python 3.8-3.11 on Windows and Linux with both standard CPython and Anaconda distributions. EEDL is pure Python, but depends on GDAL, which has numerous compiled C++ dependencies where installation varies by platform.
Windows
To install GDAL, Windows users may want to use Anaconda, or see this writeup about installing GDAL and other spatial packages on Windows.
Linux
Linux users should follow the GDAL
installation guide and 1) Ensure that the gdal-bin and gdal-dev packages are installed and 2) The gdal version they install
for Python matches the gdal version of the system packages (ogrinfo --version
). We don't pin a version of GDAL to allow
for this workflow.
Documentation
Documentation is under development at https://eedl.readthedocs.io. API documentation is most complete, but noisy right now. We are working on additional details to enable full use of the package.
Licensing
EEDL is licensed under the MIT license. See GitHub's license text and summary for more details of what you can do with it.
Authors
EEDL has been built by Nick Santos and Adam Crawford as part of the Secure Water Future project. This work is supported by Agriculture and Food Research Initiative Competitive Grant no. 2021-69012-35916 from the USDA National Institute of Food and Agriculture. EEDL was built in support of Water3D
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file EEDL-0.2023.11.13.tar.gz
.
File metadata
- Download URL: EEDL-0.2023.11.13.tar.gz
- Upload date:
- Size: 21.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4dd974b6dad61a3252f6b18d293cc72569dae0d705313e9e63bbc6fd4c72d11 |
|
MD5 | 212c2d13ef61f723f109db418c7294c0 |
|
BLAKE2b-256 | 9894886be3a9515d784e17ab80cce65c99e5746f4831a22b95fc8a369cb90621 |
File details
Details for the file EEDL-0.2023.11.13-py3-none-any.whl
.
File metadata
- Download URL: EEDL-0.2023.11.13-py3-none-any.whl
- Upload date:
- Size: 23.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 75f95417dd0ba80b7ffbe21ffc3ca8edad4256be0d9a0dd00b46114cccdef5c8 |
|
MD5 | 8f84f58d288d2943bcaa016c31304339 |
|
BLAKE2b-256 | 24e415eed0169e5b346b25e52f3c5a3a9f4e5d15784144c777319abb2ff644ae |