Skip to main content

No project description provided

Project description

EEGraph

EEGraph is a Python library to model electroencephalograms (EEGs) as graphs, so the connectivity between different brain areas could be analyzed. It has applications in the study of neurologic diseases like Parkinson or epilepsy. The graph can be exported as a NetworkX graph-like object or it can also be graphically visualized.

Getting Started

Prerequisites

What libraries you need to install.

  • Numpy
  • Pandas
  • Mne
  • Matplotlib
  • NetworkX
  • Plotly
  • Scipy
  • Scot
  • Entropy

Installing EEGraph

To install the latest stable version of EEGraph, you can use pip in a terminal:

pip install EEGRAPH

Functions

Documentation

EEGraph documentation is available online.

Importing EEG data

The different supported EEG file formats by EEGraph.

File format | Extension
  • Brainvision | .vhdr
  • Neuroscan CNT | .cnt
  • European data format | .edf
  • Biosemi data format | .bdf
  • General data format | .gdf
  • EGI simple binary | .egi
  • EGI MFF format | .mff
  • eXimia | .nxe

Connectivity Measures

The different available connectivity measures in EEGraph. Visit documentation for more info.

  • Cross Correlation
  • Pearson Correlation
  • Squared Coherence
  • Imaginary Coherence
  • Corrected Cross Correlation
  • Weighted Phase Lag Index (WPLI)
  • Phase Locking Value (PLV)
  • Phase Lag Index (PLI)
  • Directed Transfer Function (DTF)
  • Power Spectrum
  • Spectral Entropy
  • Shannon Entropy

Usage

Example usage of the library with Pearson Correlation.

Load data

import eegraph
G = eegraph.Graph()
G.load_data(path= "espasmo1.edf", exclude = ['EEG TAntI1-TAntI', 'EEG TAntD1-TAntD', 'EEG EKG1-EKG2'])

Modelate data

Without frequency bands
graphs, connectivity_matrix = G.modelate(window_size = 2, connectivity = 'pearson_correlation')
With frequency bands
graphs, connectivity_matrix = G.modelate(window_size = 2, connectivity = 'squared_coherence', bands = ['delta','theta','alpha'])

Visualize graph

G.visualize(graphs[0])

Connectivity Graph Output Example

Threshold

A custom threshold can be specified as a parameter in modelate. Default threshold values can be found in the documentation.

graphs, connectivity_matrix = G.modelate(window_size = 2, connectivity = 'pearson_correlation', threshold = 0.8)

Window size

The window size can be defined as an int or list.

int: The set window size in seconds, e.g.(2). All the time intervals will be 2 seconds long.

list: The specific time intervals in seconds, e.g.[0, 3, 8]. The time intervalls will be the same as specified in the input.

EEGraph Workflow

EEGraph Workflow Example

Versioning

See CHANGELOG.txt for major/breaking updates and version history.

Contact

Centro de Estudios e Innovación en Gestión del Conocimiento (CEIEC), Universidad Francisco de Vitoria.

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EEGRAPH-0.1.4.tar.gz (15.3 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page