Skip to main content

No project description provided

Project description

EIR-auto-GP

EIR auto GP Logo

Documentation Status


EIR-auto-GP: Automated genomic prediction (GP) using deep learning models with EIR.

WARNING: This project is in alpha phase. Expect backwards incompatible changes and API changes.

NOTE: This project is specifically for genomic prediction. For more general and configurable deep learning tasks, please refer to EIR.

Overview

EIR-auto-GP is a comprehensive framework for genomic prediction (GP) tasks, built on top of the EIR deep learning framework. EIR-auto-GP streamlines the process of preparing data, training, and evaluating models on genomic data, automating much of the process from raw input files to results analysis. Key features include:

  • Support for .bed/.bim/.fam PLINK files as input data.
  • Automated data processing and train/test splitting.
  • Takes care of launching a configurable number of deep learning training runs.
  • SNP-based feature selection based on GWAS, deep learning-based attributions, and a combination of both.
  • Ensemble prediction from multiple training runs.
  • Analysis and visualization of results.

Installation

First, ensure that plink2 is installed and available in your PATH.

Then, install EIR-auto-GP using pip:

pip install eir-auto-gp

Important: The latest version of EIR-auto-GP supports Python 3.12. Using an older version of Python will install a outdated version of EIR-auto-GP, which likely be incompatible with the current documentation and might contain bugs. Please ensure that you are installing EIR-auto-GP in a Python 3.12 environment.

Usage

Please refer to the Documentation for examples and information.

Workflow

The rough workflow can be visualized as follows:

EIR auto GP Workflow

  1. Data processing: EIR-auto-GP processes the input .bed/.bim/.fam PLINK files and .csv label file, preparing the data for model training and evaluation.
  2. Train/test split: The processed data is automatically split into training and testing sets, with the option of manually specifying splits.
  3. Training: Configurable number of training runs are set up and executed using EIR's deep learning models.
  4. SNP feature selection: GWAS based feature selection, deep learning-based feature selection with Bayesian optimization, and mixed strategies are supported.
  5. Test set prediction: Predictions are made on the test set using all training run folds.
  6. Ensemble prediction: An ensemble prediction is created from the individual predictions.
  7. Results analysis: Performance metrics, visualizations, and analysis are generated to assess the model's performance.

Citation

If you use EIR-auto-GP in a scientific publication, we would appreciate if you could use one of the following citations:

@article{10.1093/nar/gkad373,
    author    = {Sigurdsson, Arn{\'o}r I and Louloudis, Ioannis and Banasik, Karina and Westergaard, David and Winther, Ole and Lund, Ole and Ostrowski, Sisse Rye and Erikstrup, Christian and Pedersen, Ole Birger Vesterager and Nyegaard, Mette and DBDS Genomic Consortium and Brunak, S{\o}ren and Vilhj{\'a}lmsson, Bjarni J and Rasmussen, Simon},
    title     = {{Deep integrative models for large-scale human genomics}},
    journal   = {Nucleic Acids Research},
    month     = {05},
    year      = {2023}
}

@article{sigurdsson2024non,
  title={Non-linear genetic regulation of the blood plasma proteome},
  author={Sigurdsson, Arnor I and Gr{\"a}f, Justus F and Yang, Zhiyu and Ravn, Kirstine and Meisner, Jonas and Thielemann, Roman and Webel, Henry and Smit, Roelof AJ and Niu, Lili and Mann, Matthias and others},
  journal={medRxiv},
  pages={2024--07},
  year={2024},
  publisher={Cold Spring Harbor Laboratory Press}
}

@article{sigurdsson2022improved,
    author    = {Sigurdsson, Arnor Ingi and Ravn, Kirstine and Winther, Ole and Lund, Ole and Brunak, S{\o}ren and Vilhjalmsson, Bjarni J and Rasmussen, Simon},
    title     = {Improved prediction of blood biomarkers using deep learning},
    journal   = {medRxiv},
    pages     = {2022--10},
    year      = {2022},
    publisher = {Cold Spring Harbor Laboratory Press}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eir_auto_gp-0.4.0.tar.gz (100.8 kB view details)

Uploaded Source

Built Distribution

eir_auto_gp-0.4.0-py3-none-any.whl (123.6 kB view details)

Uploaded Python 3

File details

Details for the file eir_auto_gp-0.4.0.tar.gz.

File metadata

  • Download URL: eir_auto_gp-0.4.0.tar.gz
  • Upload date:
  • Size: 100.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.7 Linux/5.15.0-1074-azure

File hashes

Hashes for eir_auto_gp-0.4.0.tar.gz
Algorithm Hash digest
SHA256 6cb9b382377e0872f995a0d67a634bdbb21beee9204a05d50ad8a88177381aa0
MD5 603e969614dd61992cad1f40114b7115
BLAKE2b-256 df3ced97229517709d84dc926ebf6a2ee83ba3d2d72c541ab438af759648fd16

See more details on using hashes here.

File details

Details for the file eir_auto_gp-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: eir_auto_gp-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 123.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.7 Linux/5.15.0-1074-azure

File hashes

Hashes for eir_auto_gp-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 efe926bff7dfb228f87de0b58b0ff156f21652c16d561f57cec8944cc3d4abd0
MD5 cec50c1ad461993ddfc67d4d4a7b34f3
BLAKE2b-256 5bad1bcd08fe7b0327f190dc8a3e5ce34bf736c36a1111f9e9b7af5851e661c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page